AMMI AND GGE BIPLOT ANALYSIS OF GENOTYPE BY ENVIRONMENT INTERACTION AND YIELD STABILITY IN PEARL MILLET [Pennisetum glaucum (L.) R. Br.] IN INDIA

M.V. BORATKAR1*, S.W. BHIVGADE2, G.R. MANZA3, H.A. SHIVADE4, S.T. PAREEK5, D.G. ATKARI6
1Department of Botany, Yogeshwari Mahavidyalaya, Ambajogai, 431517, Dr Babasaheb Ambedkar Marathwada University, Aurangabad, 431004, Maharashtra, India
2Department of Botany, Yogeshwari Mahavidyalaya, Ambajogai, 431517, Dr Babasaheb Ambedkar Marathwada University, Aurangabad, 431004, Maharashtra, India
3Department of Botany, Yogeshwari Mahavidyalaya, Ambajogai, 431517, Dr Babasaheb Ambedkar Marathwada University, Aurangabad, 431004, Maharashtra, India
4Nath BioGenes (I) Ltd., Aurangabad, Maharashtra, India
5Rallis India Limited (A TATA Enterprise), Telangana, India
6Kukdi Crop Science Pvt. Ltd, Pune, Maharashtra, India
* Corresponding Author : mb.cotbreeder@gmail.com

Received : 07-06-2023     Accepted : 28-07-2023     Published : 30-07-2023
Volume : 15     Issue : 7       Pages : 12487 - 12491
Int J Agr Sci 15.7 (2023):12487-12491

Keywords : ANOVA, Pearl millet, GE interaction, GGE, Grain yield, Stability, Hybrid parents
Academic Editor : Dr Lekha Rawal, Dr Raj Kumar Yogi, Suhel Mehandi, Seher Dirican
Conflict of Interest : None declared
Acknowledgements/Funding : Authors are thankful to International Crops Research Institute for The Semi-Arid Tropics, Patancheru, Hyderabad, Telangana; Nath BioGenes (I) Ltd., Aurangabad, Rallis India Limited (A TATA Enterprise), Telangana, India for trial conductance and data compilation. Authors are also thankful to Department of Botany, Yogeshwari Mahavidyalaya, Ambajogai, 431517, Dr Babasaheb Ambedkar Marathwada University, Aurangabad, 431004, Maharashtra, India
Author Contribution : All authors equally contributed

Cite - MLA : BORATKAR, M.V., et al "AMMI AND GGE BIPLOT ANALYSIS OF GENOTYPE BY ENVIRONMENT INTERACTION AND YIELD STABILITY IN PEARL MILLET [Pennisetum glaucum (L.) R. Br.] IN INDIA." International Journal of Agriculture Sciences 15.7 (2023):12487-12491.

Cite - APA : BORATKAR, M.V., BHIVGADE, S.W., MANZA, G.R., SHIVADE, H.A., PAREEK, S.T., ATKARI, D.G. (2023). AMMI AND GGE BIPLOT ANALYSIS OF GENOTYPE BY ENVIRONMENT INTERACTION AND YIELD STABILITY IN PEARL MILLET [Pennisetum glaucum (L.) R. Br.] IN INDIA. International Journal of Agriculture Sciences, 15 (7), 12487-12491.

Cite - Chicago : BORATKAR, M.V., S.W. BHIVGADE, G.R. MANZA, H.A. SHIVADE, S.T. PAREEK, and D.G. ATKARI. "AMMI AND GGE BIPLOT ANALYSIS OF GENOTYPE BY ENVIRONMENT INTERACTION AND YIELD STABILITY IN PEARL MILLET [Pennisetum glaucum (L.) R. Br.] IN INDIA." International Journal of Agriculture Sciences 15, no. 7 (2023):12487-12491.

Copyright : © 2023, M.V. BORATKAR, et al, Published by Bioinfo Publications. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

Abstract

Pearl millet is one of the most important among cereal crop for human consumption and animal feeding. Regardless of this importance, its production is hampered by biotic and abiotic constraints. GXE interaction study was performed to identify the most stable hybrid parents and the desirable environment(s) for pearl millet research in India. Twenty-seven hybrid parents were evaluated for grain yield and yield-related traits at four locations (Alwar, Aurangabad, Jaipur and Jamnagar) using RCBD during 2019. Combined ANOVA showed that grain yield was significantly affected by environments, genotypes, and GE interactions. AMMI analysis revealed the contribution of environment, genotype, and GEI for 21.5%, 38.1%, and 23.1% of variation on grain yield. The first two principal components explained 87.33% of the total GEI variance. AMMI model selected MOPT-26 as 1?? best hybrid parent at one environment and as 2?? best hybrid parent at 2?? environment. The polygon view of the GGE biplot identified two mega-environments (ME1 and ME2) with winning genotypes: MOPT-26, MOPT-25 and MBL-2 respectively. The highest productive (2383.1 kg ha?1) environment, Alwar has been identified as the most; discriminating and representative testing environment whereas the lowest productive (716 kg ha?1) Jamnagar was the least discriminating and representative. MOPT-26 (2489 kg ha?1) was identified as the “ideal” and the most stable genotype followed by MOPT-25 (1946 kg ha?1) while the least stable was MBL-9. Therefore, genotypes MOPT-26 and MOPT-25 were recommended as best testers to identify new breeding lines in pearl millet growing areas of India

References

1. Devart K.R., Chugh K., Kumar A. and Yadav H.P. (2011) Chaudhary Charan Singh Haryana Agricultural University, Hisar-125004.
2. Cooper M., DeLacy I. H. (1994) Theor. Appl. Genet., 88, 561-572.
3. Gupta S.C. and Ndoye A.T. (1991) Maydica, 36, 83-86.
4. Haussmann B.I.G., Rattunde H.F.W., Weltzien-Rattunde E., Traoré P.S.C., Vom Brocke K., Parzies H. K. (2012) J. Agron. Crop Sci., 198, 327-339.
5. VSNI. GenStat for Windows. 14?? Edition, VSN International, Hemel Hempstead.
6. Daemo B.B., Yohannes D.B., Beyene T.M., Abtew W.G. (2023) International Journal of Agronomy, Article ID 6759698, 13 pages.
7. Gauch H., Hans-peter P. and Paolo A. (2008) Crop Science, 48(3), 866-889.
8. Narasimhulu R., Veeraraghavaiah R., Sahadeva Reddy B., Tara Satyavathi C., Ajay B.C. and Sanjana Reddy P. (2023) J. Environ. Biol., 44, 185-192.
9. Reddy P.S., Satyavathi C.T., Khandelwal V., Patil H.T., Gupta P.C., Sharma L.D., Mungra K.D., Singh S.P., Narasimhulu R., Bhadarge H.H., Iyanar K., Tripathi M.K., Yadav D., Bhardwaj R., Talwar A.M., Tiwari V.K., Kachole U.G., Sravanti K., Shanthi Priya M., Athoni B.K., Anuradha N., Govindaraj M., Nepolean T. and Tonapi V.A. (2021) Front. Plant Sci., 12, 670201.
10. Yan W. & Kang M.S. (2003) Geneticists, and agronomist (pp. 63-88). CRC Press.
11. Yan W., Manjit S., Baoluo M., Sheila W. and Paul L.C. (2007) Crop Science, 47(2), 643-655.
12. Sankar S. M., Singh S. P., Prakash G., Satyavathi C. T., Soumya S. L., Yadav Y., et al. (2021) Front. Plant Sci., 12, 656158.
13. Santos A., Ceccon G., Rodrigues E.V., Teodoro P.E., Makimo P.A., Alves V.B., Silva J.F., Corrêa A.M., Alvares F., & Torres F.E. (2015) African Journal of Agricultural Research, 10 (41)., 3901–3908.
14. Ishiyaku M., Victoria M.Y., Singh B.B., Olufajo O., and Zaria A.A. (2017) Plant Biology and Biotechnology, 5(2), 67-77.
15. Kang M.S. (2002) Quantitative Genetics, Genomics and Plant Breeding, 221-243.
16. Zobel R.W., Wright M.W. and Gauch H.G. (1988) Agronomy Journal, 80, 388-393.
17. Yan W., Paul L., Cornelius J.C., & Hunt L. (2002) Crop Science, 41(3), 656-663.
18. Yan W. & Tinke N.A. (2006) Canadian Journal of Plant Science, 86(3), 623-645.
19. Reddy P.S., Satyavathi C.T., Khandelwal V., Patil H.T., Narasimhulu R., Bhadarge H.H., Iyanar K., Talwar A.M., Sravanthi K. and Athoni B.K. (2022) Indian J. Genet. Plant Breed, 82(2), 167-176.