ASSOCIATION OF MHC HAPLOTYPES WITH PRODUCTION TRAITS IN COMMERCIAL BROILER CHICKENS

K. SUDINA1, ANJALY KRISHNAN2, ARUN RAVEENDRAN3, E. JAYADEVI VARIYAR4*
1Department of Biotechnology and Microbiology, Kannur University, Kannur, 6706614, Kerala, India
2Department of Statistics, College of Veterinary and Animal Sciences, Pookode, 6735762, Kerala, India
3Department of Genomics, Central University of Kerala, Kasaragod, 6713163, Kerala, India
4Department of Biotechnology and Microbiology, Kannur University, Kannur, 6706614, Kerala, India
* Corresponding Author : ejayadevi@gmail.com

Received : 01-01-2023     Accepted : 28-01-2023     Published : 30-01-2023
Volume : 15     Issue : 1       Pages : 12150 - 12152
Int J Agr Sci 15.1 (2023):12150-12152

Keywords : MHC, Association, Broiler chicken, Production traits, AS-PCR
Academic Editor : Amit Anil Shahane, S. M. Chavan, Dr P. Jaisridhar
Conflict of Interest : None declared
Acknowledgements/Funding : Authors are thankful to Department of Biotechnology and Microbiology, Kannur University, Kannur, 6706614, Kerala, India, Department of Statistics, College of Veterinary and Animal Sciences, Pookode, 6735762, Kerala, India and Department of Genomics, Central University of Kerala, Kasaragod, 6713163, Kerala, India
Author Contribution : All authors equally contributed

Cite - MLA : SUDINA, K., et al "ASSOCIATION OF MHC HAPLOTYPES WITH PRODUCTION TRAITS IN COMMERCIAL BROILER CHICKENS." International Journal of Agriculture Sciences 15.1 (2023):12150-12152.

Cite - APA : SUDINA, K., KRISHNAN, ANJALY, RAVEENDRAN, ARUN, JAYADEVI VARIYAR, E. (2023). ASSOCIATION OF MHC HAPLOTYPES WITH PRODUCTION TRAITS IN COMMERCIAL BROILER CHICKENS. International Journal of Agriculture Sciences, 15 (1), 12150-12152.

Cite - Chicago : SUDINA, K., ANJALY KRISHNAN, ARUN RAVEENDRAN, and E. JAYADEVI VARIYAR. "ASSOCIATION OF MHC HAPLOTYPES WITH PRODUCTION TRAITS IN COMMERCIAL BROILER CHICKENS." International Journal of Agriculture Sciences 15, no. 1 (2023):12150-12152.

Copyright : © 2023, K. SUDINA, et al, Published by Bioinfo Publications. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

Abstract

The capacity of birds to maintain and increase the productivity, adapt to changing circumstances and resist diseases is vital. The Major Histocompatibility Complex (MHC) of vertebrates is a prime molecule responsible for disease resistance with extensive genetic polymorphism. The present investigation was undertaken to evaluate the polymorphism of the commercial broilers at the B-L?2 region by allele-specific PCR providing implications on association with production performance for the design of efficient programmes for its upgradation. Data were collected on body weight on first day, body weight at 6 weeks, feed consumed in 6 weeks and weight gain in 6 weeks. Feed conversion ratio (FCR) or feed efficiency and broiler performance efficiency factor (BPEF) were calculated from the data collected. The MHC haplotypes were found to be associated with these production traits. The B?? allele was significantly associated with high body weight, weight gain, low FCR and high BPEF

References

1. Trowsdale (1995) Immunogenetics, 41, 1-17.
2. Molee A., Kongroi K., Kuadsantia P., Poompramun C., Likitdecharote B. (2016) Asian-Australas. J. Anim. Sci., 29(1), 29-35.
3. Nikbakht G., Esmailnejad A. (2015) Immunogenet, 67(4), 247-252.
4. Haunshi S., Devara D., Ramasamy K., Ullengala, R., Chatterjee R. N. (2020) Arch. Anim. Breed, 63, 173-182.
5. Sambrook J., Russel D.W. (2001) Molecular Cloning-A Laboratory Manual. (3rd edition). Cold Spring Harbour Laboratory Press, New York.
6. Zheng D., O’Keefe G., Li L., Jhonson L.W., Ewald S.J. (1999) Anim. Genet., 30, 109-119.
7. Emara M.G., Kim H., Zhu J., Lapierre R.R., Lakshmanan N., Lillehoj H. S. (2002) Poult. Sci., 81, 1609-1617.
8. Bergstrom T.F., Josefsson A., Erlich H.A. and Gyllensten U.B. (1997) Hereditas, 127, 1-5.
9. Kwon J.M., Goate A.M. (2000) Alcohol Res. and Health, 24, 164-168.
10. Bacon L.D. (1987) Poult. Sci., 66, 802-811.
11. Lamont S.J. (1998) Rev. Sci. Tech., 17(1), 128-142.
12. Lunden A., Edfors-Lilja I., Johansson K., Liljedahl L.E., Simonsen M. (1993) Poult. Sci., 72(6), 989-999.
13. Fulton J.E., Juul-Madsen H.R., Ashwell C.M., McCarron A.M., Arthur J.A., O’Sullivan N.P., Taylor Jr. R. L. (2006) Immunogenet, 58, 407-421.
14. Ewald S.J., Ye X., Avendano S., McLeod S., Lamont S.J. and Dekkers J.C. (2007) Anim. Genet., 38, 174-176.
15. Dunnington E.A., Larsen A.S., O’Sullivan N.P., Siegel P.B. (1992) J. Anim. Breed. Genet., 109:188-196
16. Dunnington E.A., Briles W.E., Briles R.W., Siegel P.B. (1996) Poult. Sci., 75(10), 1156-1160.
17. Haunshi S., Padhi M. K., Niranjan M., Rajkumar U., Shanmugam M., Chatterjee R. N. (2000) Indian J. Anim. Sci., 83(1), 59-62.
18. Martinez D.A., Weil J.T., Suesuttajit N., Umberson C., Scott A., Coon C.N. (2022) Animals, 12, 2706.