THE POTENTIAL OF NANOPARTICLES TO CONTROL BLACK SCURF DISEASE OF POTATO CAUSED BY RHIZOCTONIA SOLANI UNDER IN VITRO CONDITIONS

S. LAD1*, SHRVAN KUMAR2, R. PRASAD3
1Department of Genetics and Plant Breeding, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
2Department of Mycology and Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
3Department of Genetics and Plant Breeding, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
* Corresponding Author : lads849@gmail.com

Received : 02-03-2022     Accepted : 27-03-2022     Published : 30-03-2022
Volume : 14     Issue : 3       Pages : 11168 - 11171
Int J Agr Sci 14.3 (2022):11168-11171

Keywords : Rhizoctonia solani, Nanoparticles
Academic Editor : Dr B L Raghunandan, M. Sekhar
Conflict of Interest : None declared
Acknowledgements/Funding : Authors are thankful to Plant Biotechnology Laboratory and Plant Protection Laboratory, Banaras Hindu University, Barkachha, Uttar Pradesh. Authors are also thankful to Department of Genetics and Plant Breeding, and Department of Mycology and Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, 221005, India
Author Contribution : All authors equally contributed

Cite - MLA : LAD, S., et al "THE POTENTIAL OF NANOPARTICLES TO CONTROL BLACK SCURF DISEASE OF POTATO CAUSED BY RHIZOCTONIA SOLANI UNDER IN VITRO CONDITIONS." International Journal of Agriculture Sciences 14.3 (2022):11168-11171.

Cite - APA : LAD, S., SHRVAN KUMAR, PRASAD, R. (2022). THE POTENTIAL OF NANOPARTICLES TO CONTROL BLACK SCURF DISEASE OF POTATO CAUSED BY RHIZOCTONIA SOLANI UNDER IN VITRO CONDITIONS. International Journal of Agriculture Sciences, 14 (3), 11168-11171.

Cite - Chicago : LAD, S., SHRVAN KUMAR, and R. PRASAD. "THE POTENTIAL OF NANOPARTICLES TO CONTROL BLACK SCURF DISEASE OF POTATO CAUSED BY RHIZOCTONIA SOLANI UNDER IN VITRO CONDITIONS." International Journal of Agriculture Sciences 14, no. 3 (2022):11168-11171.

Copyright : © 2022, S. LAD, et al, Published by Bioinfo Publications. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

Abstract

Nanoparticles have been known to have strong anti-microbial properties and therefore, these days, they are being used to control plant pathogenic diseases efficiently. In this context present study, we have assessed the effect of three different nanoparticles, i.e., AgNPs, CuONPs and MgONPs of different concentrations like 25, 50, 75, and 100 ppm against the growth of against Rhizoctonia solani under in vitro conditions. Findings reveal that all the three nanoparticles showed inhibitory effects on mycelial growth and sclerotium production. However, increasing the dose of such nanoparticles shows more inhibition on mycelial growth along with sclerotium production as well. Hence, it is concluded that for controlling the plant disease by using nanoparticles is one of the eco-friendly approaches as compared to using the expensive chemicals

References

1. Georgiou C.D., Tairis N. & Sotiropoulou A. (2000) Mycological Research, 104, 1191-1196.
2. Singh V., Kumar S., Lal M., & Hooda K.S. (2014) Research on Crops, 15(3), 644-650.
3. Jain J., Arora S., Rajwade J.M., Omray P., Khandelwal S., Paknikar (2009) Mol Pharm, 6(5), 1388-401.
4. Rauter H., Matyushin V., Alguel Y., Pittner F. & Schalkhammer T. (2004) Macromolecular Symposia, 17, 109-134.
5. Jin R. (2012) Nanotechnol Rev, 1, 31-56.
6. Francesco B., Giuseppe I., Tomas P., et al (2014) Nature Nanotechnology, 9,768-779.
7. Yamanaka M., Hara K., & Kudo J. (2005) Applied and environmental microbiology, 71, 7589-93.
8. Agnihotri S., Mukherji S. and Mukherji S. (2014) RSC Adv., 4, 3974-3983.
9. Geranio L., Heuberger M., and Nowack B. (2009) Environ. Sci. Technol., 43,8113-8118.
10. Braydich-Stolle L., Hussain S., Schlager J.J., et al. (2005) Toxicol. Sci., 88,412-419.
11. Marambio-Jones C., Hoek E.M. (2010) Nanoparticle Res., 12, 1531-1551.
12. Dibrov P., Dzioba J., Gosink K. (2002) AgentsChemother, 46, 2668-2670.
13. Morones J.R., Elechiguerra J.L., Camacho A., et al. (2005) Nanobiotechnology, 16, 2346-2353.
14. Lee B., Lee, M.J., Yun S.J., Kim K., Choi I.H. & Park S. (2019) International journal of nanomedicine, 14, 4801-4816.
15. Khan A., Rashid A., Younas R. and Chong R. (2015) International Nano Letters, 6, 21- 26.
16. Heiligtag F. & Niederberger M. (2013) Materials Today, 16, 262-271.
17. Liao Y.Y., Strayer-Scherer A., White J.C. et al. (2019) Scientific Reports, 9, 18-53.
18. Nguyen Nhu Y., Grelling N., Wetteland C., Rosario R. & Liu H. (2018) Scientific Reports, 8,
19. Wang L., Hu C., & Shao L. (2017) International journal of nanomedicine, 12, 1227-1249.
20. Yerragopu P.S., Hiregoudar S., Nidoni U., Ramappa K.T., Sreenivas A.G. & Doddagoudar S.R. (2020) International Research Journal of Pure and Applied Chemistry, 21(3), 37-50.
21. Ramakrishna A., & Ravishankar G.A. (2011) Plant signalling & behavior, 6(11), 1720-1731.
22. Das A., & Dutta P. (2021) Journal of Nanoscience and Nanotechnology, 21(6), 3547-3555.
23. Oktarina H., Woodhall J. & Singleton I. (2021) Journal Natural, 21(1), 1-4.
24. Kim S., Choi J.E., Choi J., Chung K.H., Park K., Yi J., & Ryu D.Y. (2009) Toxicology in vitro: An International Journal Published in Association with BIBRA, 23(6), 1076-1084.
25. Skóra B., Krajewska U., Nowak A. et al. (2021) Scientific Reports, 11, 13451.
26. Kim H., Park H. & Choi S. (2011) Journal of nanoscience and nanotechnology, 11, 5781-87.
27. Kanhed P., Birla S., Gaikwad S., Gade A., Seabra A., Rubilar O., Duran N. & Rai M. (2014) Materials Letters, 115, 13-17.
28. Gonzalez-Melendi P., Fernández-Pacheco R., Coronado M.J., et al. (2008) Annuals of Botany, 101, 187-195.
29. Cyren R., Sanghamitra M., Peralta J.R., Duarte-Gardea M.O., Gardea-Torresdey J. (2011) Journal of agricultural and food chemistry, 59(8), 3485-98.
30. Rai M., Kon K., Ingle A., et al. (2014) Appl Microbiol Biotechnol, 98, 1951-1961.
31. Kim S.W., Jung J.H., Lamsal K., Kim Y.S., Min J.S., & Lee Y.S. (2012) Mycobiology, 40(1), 53-58.
32. Ismail A.M. (2021) Egyptian Journal of Phytopathology, 49(2), 116-130.
33. Al-Kaise A. (2015) Ph.D. thesis, College of Agriculture, University of Baghdad.
34. Mansoor S., Zahoor I., Baba T.R., Padder S.A., Bhat Z.A., Koul A.M., & Jiang L. (2021) Front. Nanotechnol, 3, 679358.
35. Gamboa S.M., Rojas E.R., Martínez V.V., & Vega-Baudrit J. (2019) Int. J. Biosen. Bioelectron, 5, 166-173.
36. Daisy S.L., Mary A.C.C., Devi K., & Santhana S. (2015) Int. J. Nano. Corr. Sci. Engg, 2(5), 64-69.
37. Khan A., Rashid A., Younas R., & Chong R. (2016) International Nano Letters, 6(1), 21-26.