DISCOVERING MYCOFLORA ASSOCIATION IN RICE STRAW AND POTENTIAL CELLULOLYTIC AND LIGNINOLYTIC ISOLATES

ANAMIKA1*, SHRVAN KUMAR2, RAVINDRA PRASAD3
1Department of Genetics and Plant Breeding, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
2Department of Mycology and Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
3Department of Genetics and Plant Breeding, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
* Corresponding Author : anamikadnarna@gmail.com

Received : 01-03-2022     Accepted : 27-03-2022     Published : 30-03-2022
Volume : 14     Issue : 3       Pages : 11163 - 11165
Int J Agr Sci 14.3 (2022):11163-11165

Keywords : Lignocellulosic Biomass, Cellulolysis, Ligninolysis
Academic Editor : Dr Sneh Gautam, Hanuman Singh
Conflict of Interest : None declared
Acknowledgements/Funding : Authors are thankful to Department of Genetics and Plant Breeding, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India and Department of Mycology and Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
Author Contribution : All authors equally contributed

Cite - MLA : ANAMIKA, et al "DISCOVERING MYCOFLORA ASSOCIATION IN RICE STRAW AND POTENTIAL CELLULOLYTIC AND LIGNINOLYTIC ISOLATES." International Journal of Agriculture Sciences 14.3 (2022):11163-11165.

Cite - APA : ANAMIKA, SHRVAN KUMAR, PRASAD, RAVINDRA (2022). DISCOVERING MYCOFLORA ASSOCIATION IN RICE STRAW AND POTENTIAL CELLULOLYTIC AND LIGNINOLYTIC ISOLATES. International Journal of Agriculture Sciences, 14 (3), 11163-11165.

Cite - Chicago : ANAMIKA, SHRVAN KUMAR, and RAVINDRA PRASAD. "DISCOVERING MYCOFLORA ASSOCIATION IN RICE STRAW AND POTENTIAL CELLULOLYTIC AND LIGNINOLYTIC ISOLATES." International Journal of Agriculture Sciences 14, no. 3 (2022):11163-11165.

Copyright : © 2022, ANAMIKA, et al, Published by Bioinfo Publications. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

Abstract

Globally, the habitation of post- harvest residues in crops like paddy, with fungi causes a major loss economically and in terms of sustainability due to pathogenic manifestation and alter of taste. Lignocellulosic biomass produced from the cultivation of rice holds high potential for solving the problems of new generation biofuels in India. This lignocellulosic mass can be utilized for effective production of these sustainable by- products by exploiting and manipulating the pathogenic ability of the inhabiting mycoflora in them. The cellulolytic and ligninolytic property of fungi can help in the extraction of lignin and cellulose

References

1. Chang A.J., Fan J. & Wen X. (2012) International Biodeterioration & Biodegradation, 72, 26-30.
2. Moubasher A.H., Abdel-Hafez S.I. & El-Maghraby O.O. (1985) Cryptogamie. Mycologie, 6(2), 129-143.
3. Phillips S.I., Wareing P.W. & Dutta A. et al. (199) Mycopathologia, 133, 15–21.
4. Kumar S., Singh S.P., Mishra I.M., & Adhikari D.K. (2009) Chemical Engineering & Technology: Industrial Chemistry Plant Equipment Process Engineering Biotechnology, 32(4), 517-526.
5. Shi J., Sharma-Shivappa R.R., Chinn M. & Howell N. (2009) Biomass and Bioenergy, 33(1), 2009, 88-96.
6. Masran R., Zanirun Z., Bahrin E.K., Ibrahim M.F., Yee P.L. & Abd-Aziz S. (2016) Applied Microbiology and Biotechnology, 100(12), 5231-5246.
7. Klass D.L. Biomass for renewable energy, fuels, and chemicals, (1998), Elsevier.
8. Lemieux, P. M., Lutes, C. C., & Santoianni, D. A. (2004) Progress in Energy and Combustion Science, 30(1), 1-32.
9. Keshtkar H. & Ashbaugh L.L. (2007) Atmospheric Environment, 41(13), 2729-2739.
10. Wood T. & Bhat K. (1998) Methods in Enzymology, 87-112.
11. Tien M. & Kirk T.K. (1988) Methods in enzymology, 161, 238-249.
12. Thatheyus A.J. & Ramya D. (2013) Science International, 1(4).
13. Namnuch N., Thammasittirong A. & Thammasittirong S.N. (2020) Mycology, 12(2), 119–127.
14. Ify, O.A., Amarachi O.U.S., Amechi O.I., Ifeanyi U.E., Ikechukwu N.A., Josephine M.M., Chuks O.C.I., & Ehi O.E. (2021) Asian Journal of Biotechnology and Genetic Engineering, 4(3), 17-26.
15. Li S.F., Wang H., Chen J.L., Zhu H.X., Yao R.S., & Wu H. (2020) Iranian Journal of Biotechnology, 18(3), 2461.
16. Milstein O.A., Haars A., Sharma A., Vered Y., Shragina L., Trojanowski J. & Hüttermann A. (1984) Applied Biochemistry and Biotechnology, 9(4), 393-394.
17. Yadav M. & Vivekanand V. (2020) Bioresource technology, 306, 2020, 123151.
18. Sakai K., Yamaguchi A., Tsutsumi S., Kawai Y., Tsuzuki S., Suzuki H. & Shimizu M. (2020) AMB Express, 10(1), 1-13.
19. Park M.S., Oh S.Y., Fong J.J., Houbraken J. & Lim Y.W. (2019) Scientific reports, 9(1), 2019, 1-11.
20. Juárez-Cisneros G., Campos-García J., Díaz-Pérez S.P., Lara-Romero J., Tiwari D.K., Sánchez-Yáñez J.M. & Villegas J. (2021) Peer Journal, 9, e11127.
21. Clocchiatti A., Hannula S.E., Rizaludin M.S., Hundscheid M.P., Schilder M.T., Postma J. & de Boer W.(2021) Microorganisms, 9(6), 1285.