ENHANCED BIOREMEDIATION OF PETROLEUM CONTAMINATED SITES: AN INTEGRATIVE APPROACH THROUGH MICROBIAL TECHNOLOGY

R. DAS1*, B.N. TIWARY2
1Dr APJ Abdul Kalam Centre of Excellence for Innovation and Entrepreneurship, Dr MGR Educational and Research Institute, Maduravoyal, Chennai, 600095, India
2Department of Biotechnology, Guru Ghasidas Vishwavidyalaya, Bilaspur, 495009, Chhattisgarh, India
* Corresponding Author : reenadas.08@gmail.com

Received : 20-06-2020     Accepted : 24-09-2020     Published : 30-09-2020
Volume : 12     Issue : 18       Pages : 10199 - 10206
Int J Agr Sci 12.18 (2020):10199-10206

Keywords : Bioremediation, Petroleum Hydrocarbons, Biostimulation, Bioaugmentation, Biosurfactants
Academic Editor : Dr Lawal Mohammad Anka, Dr Pramod Kumar Mishra, Shripad Bhat
Conflict of Interest : None declared
Acknowledgements/Funding : Authors are thankful to Department of Biotechnology, Guru Ghasidas Vishwavidyalaya, Bilaspur, 495009, Chhattisgarh, India. Authors are also thankful to Dhan Prakash, Technical Assistant, IMTECH, Chandigarh, for scientific inputs.
Author Contribution : All authors equally contributed

Cite - MLA : DAS, R. and TIWARY, B.N. "ENHANCED BIOREMEDIATION OF PETROLEUM CONTAMINATED SITES: AN INTEGRATIVE APPROACH THROUGH MICROBIAL TECHNOLOGY." International Journal of Agriculture Sciences 12.18 (2020):10199-10206.

Cite - APA : DAS, R., TIWARY, B.N. (2020). ENHANCED BIOREMEDIATION OF PETROLEUM CONTAMINATED SITES: AN INTEGRATIVE APPROACH THROUGH MICROBIAL TECHNOLOGY. International Journal of Agriculture Sciences, 12 (18), 10199-10206.

Cite - Chicago : DAS, R. and B.N., TIWARY. "ENHANCED BIOREMEDIATION OF PETROLEUM CONTAMINATED SITES: AN INTEGRATIVE APPROACH THROUGH MICROBIAL TECHNOLOGY." International Journal of Agriculture Sciences 12, no. 18 (2020):10199-10206.

Copyright : © 2020, R. DAS and B.N. TIWARY, Published by Bioinfo Publications. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

Abstract

Degradation of petroleum hydrocarbons by the means of microorganisms is a favourable approach over physical removal methods owing to their ubiquitous nature. Enhanced bioremediation, i.e., the use of a patented combination of microorganisms, surfactants, and emulsifiers, break the contaminant down into tiny pieces, which can then be surrounded by enzymes and quickly digested. In situ bioremediation techniques involving processes like biostimulation, bioaugmentation and intrinsic bioremediation do not require excavation of the contaminated soils, so is less expensive, create less dust, and cause less release of contaminants than ex situ techniques. Abiotic factors such as structure of the hydrocarbons, temperature, physical state of the pollutant, salinity and pressure and oxygen content are known to affect the rate of degradation. Also, many biotic factors viz., chemotactic attraction of microorganisms towards pollutants, production of biosurfactants, formation of biofilms have been affirmed to augment the process of degradation. Hydrocarbons interact with the soil matrix and the microorganisms present in the vicinity, determining the fate of the contaminant relative to its chemical nature and microbial degradative capabilities. Degradation can be monitored by measuring the changes occurred over time in concentration of the hydrocarbons and by the increase/decrease in the number of microorganisms present in the vicinity. This review presents an overview of techniques employed in treatment of petroleum hydrocarbon contaminated sites by the means of bioremediation and the factors affecting it.

References

1. Gerhardt KE, Huang XD, Glick BR, Greenberg BM (2009) Plant science, 176, 20-30.
2. Kanagaraj J, Senthilvelan T, Panda RC, Kavitha S (2015) Journal of Cleaner Production, 89, 1-17.
3. Long H, Wang Y, Chang S, Liu G, Chen T, Huo G, Zhang W, Wu W, Tai X, Sun L, Zhang B (2017) Environmental Monitoring and Assessment, 189, 116-129.
4. Finch KC, Snook KR, Duke CH, Fu KW, Tsz Ho Tse Z, Adhikari A, Chun-Hai Fung I (2016) Natural Hazards, 83, 729-760.
5. Lee A, Bye M (2019) Kendig's Disorders of the Respiratory Tract in Children (Ninth Edition), 626-633.e2.
6. Han J, Kim HS, Kim IC, Kim S, Hwang UK, Lee JS (2017) Ecotoxicology and Environmental Safety, 145, 511-517.
7. El-Alam I, Verdin A, Fontaine J, Laruelle F, Chahine R, Makhlouf H, Lounès-Hadj Sahraoui A (2018) Environmental Monitoring and Assessment, 190, 738-745.
8. Prabha N, Sannasimuthu A, Kumaresan V, Elumalai P, Arockiaraj J (2020) International Journal of Peptide Research and Therapeutics, 26, 75-83.
9. Atikul M, Biswas B, Smith E, Naidu R, Megharaj M (2018) Chemosphere,212, 755-767.
10. Quintella CM, Mata AMT, Lima LCP (2019) Journal of Environmental Management, 241, 156-166.
11. Amin MM, Khanahmad H, Teimouri F, Sadani M, Karami MA, Rahimmanesh I (2017) Bulgarian Chemical Communications, 49, 735-741.
12. Intwala SM , Barot JK (2019) Research & Reviews: A Journal of Life Sciences, 9, 11-16.
13. Asgari A, Nabizadeh R, Mahvi AH, Nasseri S, Mohammad Hadi Dehghani, Shahrokh Nazmara & Kamyar Yaghmaeian (2017) Journal of Environmental Health Science and Engineering, 15, 3-9.
14. Chikere CB, Tekere M, Adeleke R (2019) Sustainable Chemistry and Pharmacy, 14, 100-177.
15. Safdari MS, Kariminia HR, Ghobadi Nejad Z, Fletcher TH (2017) Water, Air, & Soil Pollution, 228, 37-40.
16. Boufadel MC, Geng X, Short J (2016) Marine Pollution Bulletin, 113, 1(2), 156-164.
17. Atlas RM (1981) Microbiology Reviews, 45, 180-209.
18. Xia M, Liu Y, Taylor AA, Fu D, Khan AR, Terry N (2017) International Biodeterioration & Biodegradation, 123, 70-77.
19. Jadhav S, Sharma S, Sibi G (2019) Bioprocess Engineering, 3(2), 6-11.
20. Khomarbaghi Z, Shavandi M, Amoozegar MA, Dastgheib SMM (2019) International Journal of Environmental Science and Technology, 16, 7849-7860.
21. Yang CL, Liu HJ, Gao Y, Ma Z, Yang B, Ling W, Waigi MG (2019) Environmental Pollution, 251, 773-782.
22. Abdel-Shafy HI, Mansour MSM (2019) Microbial Action on Hydrocarbons, 353-386.
23. Antwis RE, Griffiths SM, Harrison XA, Aranega-Bou P, Arce A, Bettridge AS, Brailsford FL, de Menezes A, Devaynes A, Forbes KM (2017) FEMS Microbiology Ecology, 93(5), 44-56.
24. Miri S, Naghdi M, Rouissi T, Brar SK, Martel R (2019) Critical Reviews in Environmental Science and Technology, 49(7), 553-586.
25. Ikhajiagbe B, Chidozie Ogwu M (2020) Beni-Suef University Journal of Basic and Applied Sciences, 9, 26-35.
26. Margesin R, Hammerle H, Tscherko D (2007) Microbial Ecology, 55, 259-269.
27. Azubuike CC, Chikere CB, Okpokwasili GC (2016) World Journal of Microbiology and Biotechnology, 32, 180-189.
28. Beškoski VP, Gordana GC, Mili? J, Ili? M, Mileti? S, Šolevi? T, Vrvi? MM (2011) Chemosphere, 83(1), 34-40.
29. Martínez Álvarez LM, LAM Ruberto, Lo Balbo A, Mac Cormack WP (2017) Science of The Total Environment, 590-591, 194-203.
30. Sungthong R, Tauler M, Grifoll M, Ortega-Calvo JJ (2017) Environmental Science and Technology, 51, 20, 11935-11942.
31. Dias RL, Ruberto L, Hernández E, Vázquez SC, Balbo AL, Del Panno ML, Mac Cormack WP (2012) International Biodeterioration Biodegradation, 75, 96-103.
32. Saeed Safdari M, Karminia HM, Rehmati M, Fazlollahi F, Polasko A, Mahendra S, Wilding WV, Fletcher TH (2018) Journal of Hazardous Materials, 342, 270-278.
33. Tahhan RA, Ammari AS, Soussous AJ, Al-Shdaifat AI (2011) International Biodeterioration Biodegradation, 65(1), 130-134.
34. Chukwunonso Ossai I, Ahmed A, Hassan A, Hamid FS (2020) Environmental Technology & Innovation, 17, 100526.
35. Kauppi S, Sinkkonen A, Romantschuk A (2011) International Biodeterioration & Biodegradation, 65(2), 359-368.
36. Tuo BH, Yan JB, Fan BA, Yang ZH, Liu JZ (2012) Bioresource Technology, 107, 55-60.
37. Birch H, Hammershøj R, Comber M, Mayer P (2017) Chemosphere, 184, 400-407.
38. Chang W, Akbari A, Snelgrove J, Frigon D, Ghoshal S (2013) Chemosphere, 91(11), 1620-1626.
39. Koshlaf E, Ball AS (2017) AIMS Microbiology, 3(1), 25-49.
40. Ren X, Zeng G, Tang L, Wang J, Wan J, Liu Y, Yu J, Yi H, Ye S, Deng R (2018) Science of The Total Environment, 610-611, 1154-1163.
41. Nzila A (2018) Environmental Pollution. 239, 788-802.
42. Varjani SJ (2017) Bioresource Technology, 223, 277-286.
43. Angeles O, Medina-Moreno SA, Jiménez-González A, Coreño-Alonso A, Lizardi-Jiménez MA (2017) Chemical Engineering Science, 165, 108-112.
44. Hamzah A, Syazana SN, Salleh M, Wong KK, Sarmani S (2016) Soil and Sediment Contamination: An International Journal, 25:3, 256-265.
45. Shuo Jiao, Zhenshan Liu, Yanbing Lin, Jun Yang, Weimin Chen, Gehong Wei (2016) Soil Biology and Biochemistry, 98, 64-73.
46. Ventorino V, Pascale A, Fagnano M, Adamo P, Faraco V, Rocco C, Fiorentino N, Pepe O (2019) Journal of Cleaner Production, 239, 118087.
47. Palma E, Tofalos AE, Daghio M, Franzetti A, Tsiota F, Cruz Viggi C, Papini MP, Aulenta F (2019) New Biotechnology, 53, 41-48.
48. Verardo E, Atteia O, Prommer H (2017) Journal of Contaminant Hydrology, 201, 6-18.
49. Shahsavari E, Poi G, Medina AA, Haleyur N, Ball AS (2017) n: Anjum N., Gill S., Tuteja N. (eds) Enhancing Cleanup of Environmental Pollutants, 21-41.
50. Mikkonen A, Yläranta K, Tiirola M, Ambrosio Leal Dutra L, Salmi P, Romantschuk M, Copley S, Ikäheimo J, Sinkkonen A (2018) Water Research, 138, 118-128.
51. Wanga Y, Li T, Zhang R, Russell J, Xiao X, Cheng Y, Zhang F, Liu Z, Guan M, Han Q (2020) Environmental Pollution, https://doi.org/10.1016/j.envpol.2020.115415.
52. Megharaj M, Ramakrishnan B, Venkateswarlu S, Sethunathan N, Naidu R (2011) Environment International, 37(8), 1362-1375.
53. Steliga T, Jakubowicz P, Kapusta K (2012) Bioresource Technology, 125, 1-10.
54. Lv H, Su X, Wang Y, Dai Z, Liu M (2018) Chemosphere, 206, 293-301.
55. Dariusz W?óka, Agnieszka Placek, Agnieszka Rorat, Marzena Smol, Ma?gorzata Kacprzak (2017) Ecotoxicology and Environmental Safety, 145, 161-168.
56. Ferrari DG, Pratscher J, Aspray TJ (2019) Waste Management, 95, 365-369.
57. Partovinia A, Naeimpoor F, Nejazi P (2010) Journal of Hazardous Materials, 181 (1-3), 133-139.
58. Ojewumi ME, Okeniyi JO, Ikotun JO, Okeniyi ET, Ejemen VA, Idowu Popool API (2018) Data in Brief, 19, 101-113.
59. Gong Y, Tang J, Zhao D (2016) Water Research, 89, 309-320.
60. Srivastava V, Srivastava T, Kumar MS (2019) International Biodeterioration & Biodegradation, 140, 2019, 43-56.
61. Liu X, Selonen V, Steffen K, Surakka M, Rantalainen AL, Romantschuk M, Sinkkonen A (2019) Chemosphere, 225, 574-578.
62. Behera BK, Das A, Sarkar DJ, Weerathung P, Parida PK, Das BK, Thavamani P, Ramanathan R, Bansal V (2018) Environmental Pollution, 241, 212-233.
63. Garitaonaindia MT, Llamas I, Toral L, Sampedro I (2019) Science of The Total Environment, 669, 631-636.
64. Wang H, Hu J, Xu K (2018) Biodegradation, 29, 1-10.
65. Adadevoh JST, Andrew Ramsburg CS, Ford RM (2018) Environmental Science Technology, 52(13), 7289-7295.
66. Corti Monzón G, Nisenbaum M, Herrera Seitz MK (2018) Current Microbiology, 75, 1108-1118.
67. Ahmad F, Zhu D, Sun J (2020) Environmental Sciences Europe, 32:52.
68. Samson R, Bodade R, Zinjarde S, Kutty R (2019) FEMS Microbiology Letters, 366, 14, 168-179.
69. Reid T, Droppo IG, Chaganti SG, Weisener SG (2019) Science of The Total Environment, 665, 113-124.
70. Krell T, Lacal J, Reyes-Darias RA, Jimenez-Sanchez C, Sungthong J, Ortega-Calvo JJ (2013) Current Opinion Biotechnology 24(3), 451-456.
71. Dongwei C, Shuang-Jiang L, Wenbin D (2019) Journal of Hazardous Materials, 366, 512-519.
72. Huang Z, Pan X, Xu N, Guo M (2019) Microbiological Research, 219, 40-48.
73. Lu Y, Zheng G, Zhou W, Wang J, Zhou L (2019) Science of The Total Environment, 665, 1073-1082.
74. Yadav MK, Vidal JE, Song JJ (2020) Current Research and Future Trends in Microbial Biofilms, 15-28.
75. Zhou L, Dong F, Li H, Huo T, Wang P, Liu M, Yang G, Zhang W, Hu W, Nie X, He H, Li B, Frost RL (2019) Chemical Engineering Journal, 393-401.
76. Nisenbaum M, Hernán Sendra G, Gilbert CA, Scagliola M, González JF, Murialdo SE (2013) Journal of Environmental Science, 25(3), 613-625.
77. Ali N, Bilal M, Khan A, Ali F, Iqbal HFN (2020) Science of The Total Environment, 704, 135391.
78. Chong H, Li Q (2017) Microbial Cell Factory, 16, 137.-142.
79. Satputea KS, Banpurkar GA, Banat I, Ibrahim, Sangshetti NJ, Patil H, Rajendra N, Gade W (2016) Current Pharmaceutical Design, 22(11), 1429-1448.
80. Liu Y, Zeng G, Zhong H, Wang Z, Liu Z, Cheng M, Liu G, Yang X, Liu S (2017) Journal of Hazardous Materials, 322, 394-401.
81. Lia X, Guo D, Zhang C, Niu D, Fu H, Wan C (2018) Science of The Total Environment, 627, 1209-1217.
82. Varjani S, Upasani VN (2019) Journal of Environmental Management, 245, 358-366.
83. Van Hong Thi Pham, Chaudhary, DK, Jeong S (2018) World Journal of Microbiology Biotechnology, 34, 33-39.
84. Zhao Y, Yue S, Bilal M, Hu H, Wang W, Zhang X (2017) Science of The Total Environment, 609, 1238-1247.
85. Brzeszcz J, Kaszycki P (2018) Biodegradation, 29, 359-407.
86. Arulazhagan P, Mnif S, Rajesh Banu J, Huda Q, Jalal MAB (2017) HC-0B-01: Biodegradation of Hydrocarbons by Extremophiles. In: Heimann K., Karthikeyan O., Muthu S. (eds) Biodegradation and Bioconversion of Hydrocarbons. Environmental Footprints and Eco-design of Products and Processes. Springer, Singapore.
87. Zhang J, Zhang X, Liu J, Li R, Shen B (2012) Bioresource Technology, 124, 83-89.
88. Das R, Tiwary BN (2013) Journal of Basic Microbiology, 53(9), 723-32.
89. Todescato D, Maass D, Mayer DA (2017) Applied Biochemistry Biotechnology, 183, 1375-1389.
90. Gurav R, Lyu H, Ma J (2017) Environment Science Pollution Research, 24, 11392-11403.
91. Patel V, Cheturvedula S, Madamwar D (2012) Journal of Hazardous Materials, 201-202(30), 43-51.
92. Chun-Hua L, Chun Y, Xiao-Peng H, Ming-Hua C, Xiang-Yong Z, Xu-Yi C (2017) Journal of Environmental Science and Health, Part A, 52:7, 581-589.
93. Hassan HA, Aly AA (2018) International Journal of Biological Macromolecules, 106,1107-1114.
94. Walworth J, Harvey P, Snape I (2013) Cold Region Science and Technology, 96, 117-121.
95. Abayneh Ayele B, Quanyuan C (2018) Pedosphere, 28(3), 383-410.