EFFECT OF ACAULOSPORA SCROBICULATA AND GLOMUS INTRARADICES ON THE GROWTH OF AILANTHUS EXCELSA SEEDLINGS

I. ANAND1, M.K. SINGH2*, S. KUMAR3
1Department of Forestry, Chaudhary Charan Singh Haryana Agricultural University, Hisar, 125004, Haryana, India
2Department of Forestry, Chaudhary Charan Singh Haryana Agricultural University, Hisar, 125004, Haryana, India
3Department of Agriculture Economics, Chaudhary Charan Singh Haryana Agricultural University, Hisar, 125004, Haryana, India
* Corresponding Author : mks.hau.cssri@gmail.com

Received : 01-05-2020     Accepted : 13-05-2020     Published : 15-05-2020
Volume : 12     Issue : 9       Pages : 9812 - 9815
Int J Agr Sci 12.9 (2020):9812-9815

Keywords : Acaulospora scrobiculata, Glomus intraradices, Ailanthus excelsa, Potting media
Academic Editor : Dr D V Singh, Dr A D Kalola
Conflict of Interest : None declared
Acknowledgements/Funding : Authors are thankful to Department of Forestry, Chaudhary Charan Singh Haryana Agricultural University, Hisar, 125004, Haryana, India
Author Contribution : All authors equally contributed

Cite - MLA : ANAND, I., et al "EFFECT OF ACAULOSPORA SCROBICULATA AND GLOMUS INTRARADICES ON THE GROWTH OF AILANTHUS EXCELSA SEEDLINGS." International Journal of Agriculture Sciences 12.9 (2020):9812-9815.

Cite - APA : ANAND, I., SINGH, M.K., KUMAR, S. (2020). EFFECT OF ACAULOSPORA SCROBICULATA AND GLOMUS INTRARADICES ON THE GROWTH OF AILANTHUS EXCELSA SEEDLINGS. International Journal of Agriculture Sciences, 12 (9), 9812-9815.

Cite - Chicago : ANAND, I., M.K. SINGH, and S. KUMAR. "EFFECT OF ACAULOSPORA SCROBICULATA AND GLOMUS INTRARADICES ON THE GROWTH OF AILANTHUS EXCELSA SEEDLINGS." International Journal of Agriculture Sciences 12, no. 9 (2020):9812-9815.

Copyright : © 2020, I. ANAND, et al, Published by Bioinfo Publications. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

Abstract

Pot experiment was conducted in nursery condition of Department of Forestry, CCSHAU, Hisar. Soil of potting media inoculated with two mycorrhizal fungi i.e. Glomus intraradices and Acaulospora scrobiculata with different treatments and growth parameters i.e. seed germination percentage, shoot and root length, collar diameter, number of leaves, root and shoot biomass and root colonization, mycorrhizal dependency and seedling quality index were observed after three months of Ailanthus excelsa seeds were sown in the experimental pots and found that potting media containing field soil + FYM with individual mycorrhiza performed better than other treatments.

References

1. Jat H.S., Singh R.K. and Mann J.S. (2011) Indian Journal of Traditional Knowledge,10,102-113.
2. Castillo, P., Nico, A.I., AzcónAguilar, C., Del Río Rincón, C., Calvet, C. and Jiménez Díaz, R. M. (2006) Plant Pathology, 55(5), 705-713.
3. Giovannetti, M. (2008). Structure, extent and functional significance of belowground arbuscular mycorrhizal networks. In, Varma, A. (Ed.) Mycorrhiza, State of the Art, Genetics and Molecular Biology, Eco-Function, Biotechnology, Eco-Physiology, Structure and Systematics. Third edition. Springer-Verlag,Berlin Heidelberg, pp. 59-72.
4. Genre, A. and Bonfante, P. (2010) Arbuscular mycorrhizas, Physiology and function, 57-71.
5. Gosling P., Hodge A., Goodlass G. and Bending G.D. (2006) Agriculture, Ecosystems and Environment, 113(1-4), 17-35.
6. Tisdale S.L., Nelson W.L. and Baton J.D. (1995) Soil fertility and fertilizers. Macmillan Publishing Company, USA.
7. Miransari M. (2010) Plant Biology, 12(4), 563-569.
8. Dell’Amico J., Torrecillas A., Rodriguez P., Morte A. and Sanchez-Blanco M.J. (2002) Journal of Agricultural Science, 138(4), 387-393.
9. Raddad A.I. and Momany A.I. (1990) Scientia Horticulturae, 46(3-4), 195-200.
10. Goussous S.J. and Mohammad M.J. (2009) International Journal of Agriculture and Biology,11, 463-467.
11. Guissou T., Babana A.H., Sanon K.B. and Ba A.M. (2016) Biotechnol. Agron. Soc. Environ., 20(3), 417-426.
12. 13 Giovannetti M. and Mosse B. (1980) New Phytologist, 84,489-500.
13. Phillips J.M. and Hayman D.S. (1970) Transactions of the British Mycological Society, 55(1), 158-161.
14. Plenchette C., Fortin J.A. and Furlan V. (1983) Plant and Soil, 70(2), 199-209.
15. Dickson A., Leaf A.L. and Hosner J.F. (1960) The Forestry Chronicle, 36(1), 10-13.
16. Ahmadloo F., Tabari M., Yousefzadeh H., Kooch Y. and Rahmani A. (2012) African Journal of Plant Science, 6(4), 140-149.
17. Gehlot A., Tripathi A., Rathore A., Arya I.D. and Arya S. (2014) Indian Forester, 140(8), 763-768.
18. Bhasotiya H.C. and Tandel M.B. (2017) Trends in Biosciences, 0(3), 1122-1124.
19. Banerjee K., Gadani M.H., Srivastava K.K., Verma N., Jasrai Y.T. and Jain N.K. (2013) Brazilian Journal of Microbiology, 44(2), 587-594.
20. 20 Basumatary N., Parkash V., Tamuli A.K., Saikia A.J. and Teron R. (2014) International Journal of Current Biotechnology, 2(7), 14-21.
21. Berdeni D., Cotton T.E.A., Daniell T.J., Bidartondo M., Cameron D.D. and Evans K.L. (2018) Frontiers in Microbiology, 9(1461), 1-14.
22. Chen M., Yang G., Sheng Y., Li P., Qiu H., Zhou X., Huang L. and Chao Z. (2017) Frontiers in Plant Science, 8(931), 1-10.
23. Chu E.Y. (1999) Pesquisa Agropecuária Brasileira, 34(6), 1018-1024.
24. Filho J.A.V., Mendonça Freitas M.S., Martins M.A., dos Santos P.C. and Cordeiro de Carvalho A.J. (2017) Revista Brasileira de Ciências Agrárias, 12(1), 14-19.
25. Ghosh S. and Verma N.K. (2011) Indian Forester, 137(2), 243-248
26. Ilangamudali I. and Senarathne S.H.S. (2016) The Journal of the Coconut Research Institute of Sri Lanka, 22, 01-12.
27. Mohan V. and Sandeep C. (2015) International Journal of Current Microbiology and Applied Sciences, 4(6), 811-820.
28. Mwangi R.W., Kariuki, S.T. and Wagara I.N. (2017) Journal of Natural Sciences Research, 7(10), 40-48.
29. Annapurna D., Rathore T.S. and Joshi G. (2007) Indian Forester, 133(2), 179-188.
30. Biradar A.P., Devarnavadgi S.B. and Sunitha N.D. (2001) Karnataka Journal of Agricultural Sciences, 14(2), 512-513.
31. 31 Mulugeta G. (2014) Journal of Natural Sciences Research, 4(3), 25-33.
32. Han S.H., An J.Y., Hwang J., Kim S.B. and Park B.B. (2016) Journal of Forest Science and Technology, 12(3),137-143.
33. Mehrotra M.D., Khan S.N. and Uniyal K. (1999) Indian J. For., 6, 118-123.
34. Bi Y., Zhang Y. and Zou H. (2018) International Journal of Coal Science & Technology, 5(1), 47-53.
35. Saritha B., Panneerselvam P., Mohandas S., Sulladmath V.V. and Ravindrababu P. (2014) Plant Arch., 14(2), 701-706.
36. Jasper D.A., Abott L.K. and Robbinson A.D. (1989) Plant and Soil, 115, 99-108.
37. Shukla A., Kumar A., Chaturvedi O.P., Nagori T., Kumar N. and Gupta A. (2017) Agroforestry systems, 92(2), 499-509.
38. Giri B., Kapoor R. and Mukerji K.G. (2005) New Forests, 29(1), 63-73.
39. Barua A., Gupta S.D., Mridha M.A.U. and Bhuiyan M.K. (2010) Journal of Forestry Research, 21(4), 423-432.
40. Jha A., Kamalvanshi M., Kumar A., Chakravarthy N., Shukla A. and Dhyani S.K. (2014) Turk. J. Bot., 38, 526-535.
41. Shukla A., Kumar A., Jha A. and Rao D.V.K.N. (2012) Biology and Fertility of Soils, 48(1), 109-116.
42. Shukla A., Vyas D. and Jha A. (2013) Journal of Soil Science and Plant Nutrition, 13(1), 23-33.
43. Tsakaldimi M., Tsitsoni T., Ganatsas P. and Zagas T. (2009) Plant Soil., 324, 103-113.
44. Bayala J., Dianda Z.M., Wilson Z.J., Ouedraogo S.J. and Sanon Z.K. (2009) New Forest, 38, 309-322.