PHYSIOLOGICAL AND BIOCHEMICAL RESPONSES IN AMARANTHUS (AMARANTHUS TRICOLOR L.) TO DIFFERENT SOIL MOISTURE REGIMES UNDER ELEVATED CARBON DIOXIDE CONCENTRATIONS

SRIKANTH G.A.1*, MANJU R.V.2, ROY S.3, VIJI M.M.4, BEENA A.R.5, MANASA R.6, LAKSHMI G AJAY7
1Department of Plant Physiology, College of Agriculture, Kerala Agricultural University, Vellayani, Thiruvanthapuram, 695522, Kerala, India
2Department of Plant Physiology, College of Agriculture, Kerala Agricultural University, Vellayani, Thiruvanthapuram, 695522, Kerala, India
3Department of Plant Physiology, College of Agriculture, Kerala Agricultural University, Vellayani, Thiruvanthapuram, 695522, Kerala, India
4Department of Plant Physiology, College of Agriculture, Kerala Agricultural University, Vellayani, Thiruvanthapuram, 695522, Kerala, India
5Department of Plant Physiology, College of Agriculture, Kerala Agricultural University, Vellayani, Thiruvanthapuram, 695522, Kerala, India
6Department of Plant Physiology, College of Agriculture, Kerala Agricultural University, Vellayani, Thiruvanthapuram, 695522, Kerala, India
7Department of Plant Physiology, College of Agriculture, Kerala Agricultural University, Vellayani, Thiruvanthapuram, 695522, Kerala, India
* Corresponding Author : srikanthga648@gmail.com

Received : 29-07-2019     Accepted : 17-01-2020     Published : 30-01-2020
Volume : 12     Issue : 2       Pages : 9406 - 9411
Int J Agr Sci 12.2 (2020):9406-9411

Keywords : Elevated CO2, Cowpea, Growth, Open Top Chambers, Field capacity
Academic Editor : Loushambam R. S., Rajpal Diwakar
Conflict of Interest : None declared
Acknowledgements/Funding : Authors are thankful to Kerala State Planning Board for the financial support for establishing Open Top Chamber facility for carbon dioxide enrichment studies at Department of Plant Physiology, College of Agriculture, Vellayani, Thiruvananthapuram, 695 522. Authors are also thankful to Kerala Agricultural University, Thrissur, 680 656, Kerala, India
Author Contribution : All authors equally contributed

Cite - MLA : G.A., SRIKANTH, et al "PHYSIOLOGICAL AND BIOCHEMICAL RESPONSES IN AMARANTHUS (AMARANTHUS TRICOLOR L.) TO DIFFERENT SOIL MOISTURE REGIMES UNDER ELEVATED CARBON DIOXIDE CONCENTRATIONS ." International Journal of Agriculture Sciences 12.2 (2020):9406-9411.

Cite - APA : G.A., SRIKANTH, R.V., MANJU, S., ROY, M.M., VIJI, A.R., BEENA, R., MANASA, G AJAY , LAKSHMI (2020). PHYSIOLOGICAL AND BIOCHEMICAL RESPONSES IN AMARANTHUS (AMARANTHUS TRICOLOR L.) TO DIFFERENT SOIL MOISTURE REGIMES UNDER ELEVATED CARBON DIOXIDE CONCENTRATIONS . International Journal of Agriculture Sciences, 12 (2), 9406-9411.

Cite - Chicago : G.A., SRIKANTH, MANJU R.V., ROY S., VIJI M.M., BEENA A.R., MANASA R., and LAKSHMI G AJAY . "PHYSIOLOGICAL AND BIOCHEMICAL RESPONSES IN AMARANTHUS (AMARANTHUS TRICOLOR L.) TO DIFFERENT SOIL MOISTURE REGIMES UNDER ELEVATED CARBON DIOXIDE CONCENTRATIONS ." International Journal of Agriculture Sciences 12, no. 2 (2020):9406-9411.

Copyright : © 2020, SRIKANTH G.A., et al, Published by Bioinfo Publications. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

Abstract

Raising CO2 leads to higher yielding; more vigorous crops an unexpected boon. Agricultural productivity depends on key inputs prevailing CO2, temperature and water that are the key inputs. Global warming increases temperature by 2-3°C, CO2 and other gases concentration. The present programme was an attempt to study the modifications brought in the developmental pattern of amaranthus by elevated CO2 concentration. Two weeks old potted plants were shifted to OTCs (CO2 concentration of 600ppm maintained). All the three sets of plants were maintained at field capacity (FC) initially. Soil moisture levels were brought down to 80% and 70%, in the second and third sets 30 days after planting and were maintained for a period of 30 days at these soil moisture regimes in OTCs. Plant responses in terms of growth parameters, leaf characters and dry matter accumulation were analyzed. Increasing CO2 concentration in the atmosphere can have a positive influence on the plant growth and development. The result indicated an improvement in growth performances of amaranthus under mild and severe moisture stress conditions (80% and 70% Field capacity).

References

1. IPCC (2007) Summary for policy makers. In, Solomon, S. D. M., Qin, Z., Manning, M., Chen, M., Marquis, K. B., Avery, M., Tignor, H. L. Intergovernmental Panel on Climate Change. U.K, Cambridge, 20p. 29
2. IPCC (2012) Summary for policy makers. In, Field, C. B., Barros, V., and Stocker, T. F. (eds). Managing the risks of extreme events and disasters to advance climate change adaptation. A special report of working groups I and II of the intergovernmental panel on climate change. Camb. Univ. Press, Cambridge, and New York, pp 1-19.
3. Anonymous (2014) Trends in Carbon dioxide. Available, http,//www.NOAA.in.
4. Arnon D. (1949) Journal of Plant Physiology, 24, 1-15.
5. Barr H. D. and Weatherley P. E. (1962) Australian Journal of Biological Science, 15, 413-428.
6. Mayr U., Funfgelder S., Treutter D. and Feucht W. (1995) Journal of Plant Physiology, 12,399-402.
7. Kakkar P., Das B. and Viswanathan N.P. (1984) Indian Journal of Biochemical Biophysics, 21, 130-132.
8. Sadasivam S. and Manickam A. (2008) Biochemical methods, (Second edition). New Age International Publishers, New Delhi, 256, 5
9. Apple M. E., Olszyk D. M., Ormrod D. P., Lewis J., Southworth D. and Tingey D.T. (2000) International Journal Plant Science, 161, 127-132.
10. Sarker B. C. and Michihiro H. (2011) Journal of Botany, 40(1), 1-8.
11. Curtis P. and Wang X. (1995) Oecologogy, 113,299-313.
12. Rogers H. H. and Dahlman R. C. (1993) Vegetation, 105, 117-131.
13. Rogers H.H., Runion G.B. and Krupa S.V. (1994) Environmental Pollution, 83, 155-189.
14. Yamasaki S. and Dillenburg L. R. (1999) Vegetables, 11(2), 69-75.
15. Dheeraj C. and Manju R. V. (2017) Chemical. Science Review Journal, 6(23), 2025-2031.
16. Karacan M.S. (2006) World Journal of Agriculture and Science, 2(2), 1-6.
17. Ghasemi M., Arzani K., Yadollahi A., Ghasemi S., Khorrami S. S. (2011) Journal of Nature Science and Biology, 3(1), 91-94.
18. Robertson E. J. and Leech R. M. (1995) Plant Physiol., 107, 63-71.
19. Bazzaz F. A. (1990) Journal of Ecology, 71(3), 1185-1194.
20. Lin J. S. and Wang G. X. (2002) Plant Science, 163, 627-637.
21. Ibrahim M. H. and Jaafar H. Z. (2012) Molecules, 17, 5195-5211.
22. Robredo A., Perez-Lopez U., Miranda-Apodaca J., Lacuesta M., Mena-Petite A. and Munoz-Rueda A. (2011) Environmental Experimental Bot., 71, 399-408.
23. Tezara W., Mitchell V., Driscoll S. P. and Lawlor D. W. (2002) Journal of Experimental Botany, 53, 1781-1791.
24. Driscoll S. P., Prins A., Olmos E., Kunert K. J. and Foyer C. H. (2005) Journal of Experimental Botany, 57(2), 381-390.
25. Schwanz P. and Polle A. (2001) Experimental Botany, 45, 43-53.
26. Oliver D. J., Onyike N. B., Ochonogor A. E. (2016) Plant Physiology, 93, 822-824.
27. Dheeraj C. and Manju R. V. (2018) Journal of Pharmacology Phytochemistry, 7(2), 833-837. 25
28. Poorter H., Van Berkel Y., Baxter R., Den Hertog J., Dijkstra P., Gifford R. M., Griffin K. L., Roumet C., Roy J. and Wong S. C. (2001) Plant Cell and Environment, 20,472-482.
29. Goncalves S., Ferraz M. and Romano A. (2009) Journal of Science Horticulture, 122, 96-101.
30. Morison J.I.L. and Gifford R. M. (1983) Plant Physiol., 71, 789-796.