CARBON SEQUESTRATION ON GERMINATION OF MAIZE UNDER CONTROLLED CONDITION IN OPEN TOP CHAMBER

J. KARPAGAM1*, R. NALLAIAH2
1Department of Soil Science and Agriculture Chemistry, N.S.College of Agriculture, Markapur, 523329, Acharya N.G.Ranga Agriculture University, Lam, 522034 Andhra Pradesh, India
2Department of Soil Science and Agriculture Chemistry, N.S.College of Agriculture, Markapur, 523329, Acharya N.G.Ranga Agriculture University, Lam, 522034 Andhra Pradesh, India
* Corresponding Author : karpagam13@yahoo.com

Received : 16-08-2018     Accepted : 26-08-2018     Published : 30-08-2018
Volume : 10     Issue : 16       Pages : 6981 - 6984
Int J Agr Sci 10.16 (2018):6981-6984

Keywords : Climate change, CO2 enrichment, C4 photosynthesis, Antioxidative enzymes
Academic Editor : Dr Anil Kumar
Conflict of Interest : None declared
Acknowledgements/Funding : Author thankful to N. S. College of Agriculture, Markapur, 523329, Acharya N. G. Ranga Agriculture University, Lam, 522034 Andhra Pradesh, India
Author Contribution : All author equally contributed

Cite - MLA : KARPAGAM, J. and NALLAIAH, R. "CARBON SEQUESTRATION ON GERMINATION OF MAIZE UNDER CONTROLLED CONDITION IN OPEN TOP CHAMBER." International Journal of Agriculture Sciences 10.16 (2018):6981-6984.

Cite - APA : KARPAGAM, J., NALLAIAH, R. (2018). CARBON SEQUESTRATION ON GERMINATION OF MAIZE UNDER CONTROLLED CONDITION IN OPEN TOP CHAMBER. International Journal of Agriculture Sciences, 10 (16), 6981-6984.

Cite - Chicago : KARPAGAM, J. and R., NALLAIAH. "CARBON SEQUESTRATION ON GERMINATION OF MAIZE UNDER CONTROLLED CONDITION IN OPEN TOP CHAMBER." International Journal of Agriculture Sciences 10, no. 16 (2018):6981-6984.

Copyright : © 2018, J. KARPAGAM and R. NALLAIAH, Published by Bioinfo Publications. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

Abstract

An enzymal activity experimental study was done in maize (Zea mays L.) of variety COHM5 using arbuscular mycorrhizae (AM) inoculated(M+) and non-inoculated with Glomus intraradices. Roots and shoots sampled at 15, 30 and 45 days after sowing (DAS) were estimated for total chlorophyll content, peroxidase, catalase, phenol and polyphenol oxidase, humic acid, fulvic acid, Biomass C, Biomass N, Pep case and soluble protein. Elevated CO2 with mycorrhizal inoculation significantly increases total chlorophyll content, antioxidative enzymes (peroxidase, catalase, phenol and polyphenol oxidase), humic acid, fulvic acid, Biomass C, Biomass N. But in case of Pep case and soluble protein activity increases in 370 ppm than 550 and 750 ppm its because of denaturation of enzyme activity was more pronounced as crop duration increases with the inoculation of VAM.

References

1. Attipalli R., Reddy., Girish K., Rasineni and Raghavendra A.S. (2010) Current Science, 99(11), 46-57.
2. Brown R.H. (1999) Plant Biology (eds R.F.Sage & R.K.Monson), pp. 473-507. Academic Press, San Diego.
3. Bruinsma J. (1963) Photochem photobiol., 72, [4] Cano M.P., Lobo M.G. and De Ancos, B. (1998) J. Sci. Food Agric., 76, 135-141.
5. Daniel E., Rodolphe L. and Marianne M. (1995) Tree Physiology 16, 425-432.
6. Ehleringer,J.R., Cerling, T.E. and Helliker B.R. (1997) Oecologia 112, 285-299.
7. Ghannoum O., Von Caemmerer S., Ziska L.H. and Conroy J.P. (2000) Plant, Cell and Environment 23, 931-942.
8. Hikosaka K., Kinugasa T., Oikawa S., Onoda Y. and Hirose T. (2011), Journal of Experimental Botany 62, 1523–1530.
9. Jaggard K.W., Qi A. and Ober E.S. (2010) Biological Sciences 365, 2835–2851.
10. Jenkinson D.S. and Powlson D.S. (1976) Soil Biol. Biochem., 209, 17.
11. Larkindale J. and Huang B. (2004) J. Plant Physiol., 161, 405–413.
12. Lipson D.A., Wilson R.F. and Oechel W.C. (2005) Applied and Environmental Microbiology, 71(12), 8573-8580.
13. Liu X. and Huang B. (2000) Crop Sci., 40, 503–510.
14. Lloyd J. and Farquhar G.D. (1994) Oecologia 99, 201-215.
15. Miyagi K. M., Kinugasa T., Hikosaka K. and Hirose T. (2007) Global Change Biology 13, 2161–2170.
16. Nguyen H.T. and Joshi C.P. (1993) Proceedings of International Symposium on Adaptation of Food Crops to Temperature and Water Stress, Taipei, Taiwan, AVRDC, Taiwan, AVRDC, Taiwan, 3-19.
17. Prior S.A., Rogers H.H., Runion G.B., Torbert H. and Reicosky D.C. (1997) Journal of Environmental Quality 26, 244-252.
18. Richard C.S. and Diane F.K. (1994) Physiologia Plantarum 92, 383-388.
19. Rillig M.C., Wright S.F., Kimball B.A., Printer P.J., Wall G.W., Ottmen M.J. and Leavitt S.W. (2001) Global Change Biol., 7, 333-337.
20. Sairam R.K., Srivastava G.C. and Saxena D.C. (2000) Biol. Plant, 43, 245-251.
21. Shuijin Hu, Jian., Jiansheng Wu., Kento Burkey. and MaryK.S. (2005) Global change Biology 11,213-223.
22. Solomon S., Qin D., Manning M., Chen Z., Marquis M., Averyt K. B., Tignor M. and Miller H. L. (2007) Fourth Annual Report of the Intergovernmental Panel on Climate Change.
23. Stevenson F.J. (1965) Amer. Soc. Agronomy, Madison, Wos., 1409-1421.
24. Tegelberg R., JulkunenT.R., Vartiainen M., Paunonen R., Rousi M. and Kellom Aki (2008) Environmental and Experimental Botany 62, 308-315.
25. Wright S.F. and Upadhyaya A. (1996) Soil Science 161, 575–586.