MICROALGAE: THIRD GENERATION ENERGY FEEDSTOCK FOR BIODIESEL PRODUCTION IN DEVELOPING COUNTRIES

A. KARMAKAR1*, S. KARMAKAR2, S. MUKHERJEE3
1Department of Post-Harvest Engineering, Faculty of Agricultural Engineering, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, 741252 Nadia, West Bengal, India
2Department of Post-Harvest Engineering, Faculty of Agricultural Engineering, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, 741252 Nadia, West Bengal, India
3Department of Farm Machinery & Power, Faculty of Agricultural Engineering, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, 741252 Nadia, West Bengal, India
* Corresponding Author : karmakar.ani@gmail.com

Received : 16-04-2018     Accepted : 21-04-2018     Published : 30-04-2018
Volume : 10     Issue : 8       Pages : 5817 - 5821
Int J Agr Sci 10.8 (2018):5817-5821

Keywords : Microalgae, Biodiesel, Transesterification, Integrated approach, Tubular photobioreactors
Conflict of Interest : None declared
Acknowledgements/Funding : Author thankful to Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, 741252 Nadia, West Bengal
Author Contribution : All author equally contributed

Cite - MLA : KARMAKAR, A., et al "MICROALGAE: THIRD GENERATION ENERGY FEEDSTOCK FOR BIODIESEL PRODUCTION IN DEVELOPING COUNTRIES." International Journal of Agriculture Sciences 10.8 (2018):5817-5821.

Cite - APA : KARMAKAR, A., KARMAKAR, S., MUKHERJEE, S. (2018). MICROALGAE: THIRD GENERATION ENERGY FEEDSTOCK FOR BIODIESEL PRODUCTION IN DEVELOPING COUNTRIES. International Journal of Agriculture Sciences, 10 (8), 5817-5821.

Cite - Chicago : KARMAKAR, A., S. KARMAKAR, and S. MUKHERJEE. "MICROALGAE: THIRD GENERATION ENERGY FEEDSTOCK FOR BIODIESEL PRODUCTION IN DEVELOPING COUNTRIES." International Journal of Agriculture Sciences 10, no. 8 (2018):5817-5821.

Copyright : © 2018, A. KARMAKAR, et al, Published by Bioinfo Publications. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

Abstract

In developing countries like India where import accounts for 80 percent of the crude oil supplies, alternative high yield sources are given utmost priorities for sustaining renewable energy generation. Discrepancies between expectations and realities of different non-edible biodiesel feedstocks are pushing for feedstock diversification. Microalgae, having extremely high photosynthetic efficiency are drawing attention as rich source of third generation renewable energy. The main hurdle of microalgal biodiesel production is lowering the cost to make it competitive with petroleum derived fuels. The problem can be solved by developing process technologies for harvesting and drying of algal biomass, extraction of oil, transesterification and downstream processing. India in spite of being one of the major producers of algae is yet to start such type of research and development activities on algal biodiesel. This paper reviews the potential of microalgae to produce a multitude of biofuel including biodiesel, bioethanol, biomethane (biogas), producer gas etc with integrated approach for energy, environment and agriculture.

References

1. Bajhaiya A.K., Mandotra S.K., Suseela M.R., Kiran T. and Ranade S. (2010) Asian Journal of Experimental Biological Sciences, 1 (4), 728-739.
2. Demirbas M. F. (2011) Applied Energy, 88(10), 3473-3480.
3. Chew K.W., Yap J.Y., Show P.L., Suan N.H., Juan J.C., Ling T.C., Lee D. J., Chang J.S. (2017) Bioresource Technology, 229, 53-62.
4. Mambo P., Westensee, D., Zuma, B., and Cowan, A. (2014) Water SA, 40(2), 385.
5. Mondal M., Goswami S., Ghosh A., Oinam G., Tiwari O.N., Das P., Gayen K., Mandal M.K., Halder G. N. (2017) Biotech 7(2), 99.
6. Saifullah A.Z.A., Karim M.A., Yazid, A.A. (2014) American Journal of Engineering Research, 3, 330-338.
7. Muthukumar A., Elayaraja S., Ajithkumar T.T., Kumaresan S. and Balasubramanian T. (2012) Journal of Petroleum Technology and Alternative Fuels, 3(5), 58-62.
8. Rashid N., Rehman M.S.U., Sadiq M., Mahmood T., Han J.I. (2014) Renewable and Sustainable Energy Reviews, 40, 760-778.
9. Hannon M., Gimpel J., Tran M., Rasala B. and Mayfield S. (2010) Biofuels 1(5), 763-784.
10. Spalore P., Cassan C.J., Duran E. (2006) Journal of Bioscience and Bioenergy, 101, 87–96.
11. Chisti Y. (2007) Biotechnology Advance, 25(3) 294-306.
12. Chiaramonti D., Oasmaa A. and Solantausta Y. (2007) Renewable and Sustainable Energy Reviews, 11, 1056–1086.
13. Razzak A.S., Hossain M.M., Lucky R.A., Bassi A.S. and Lasa H.D. (2013) Renewable and Sustainable Energy Reviews, 27, 622-653.
14. Osundeko O., Dean A.P. and Pittman J.K. (2014) Plant cell and Physiology, 55(10).
15. Li Y., Horsman M., Wu N., Lan C.Q. and Dubois-Calero N. (2008) Biotechnology Progress, 24(4) 815–820.
16. Carvalho A.P., Meireles L.A. and Malcata F.X. (2006) Biotechnology Progress, 22(6) 1490-1506.
17. Mendoza J.L., Granados M.R., Godos I., Acién F.G., Molina E. and Heaven S., (2013). Bioresource Technology, 137:188–95.
18. Pruvost J., Van Vooren G., Le Gouic B., Couzinet-Mossion A., Legrand J. (2011) Bioresource Technology, 102, 150–158.
19. Thomassen G., Vila U.E., Dael M.V., Lemmensp B., Passel S.V. (2016) Clean Technology Environment, Policy, 1–14.
20. Das D. (2015). Algal biorefinery: an integrated approach. New York: Springer, 73–101.
21. Yen H.W., Hu I.C., Chen C.Y., Ho S.H., Lee D.J. and Chang J.S. (2013) Biochemical Engineering Journal, 78, 1-10.
22. Oncel S., Vardar S.F. (2008) Bioresource Technology, 99(11), 4755–4760.
23. Ranjbar R., Inoue R., Katsuda T., Yamaji H. and Katoh S. (2008) Journal of Bioscience Bioengineering 106(2), 204–207.
24. Xue S., Zhang Q., Wu X., Yan C., Cong W. (2013) Bioresource Technology, 138, 141–147.
25. Hall D.O., Fernandez F.G., Guerrero E.C., Rao K.K. and Grima E.M. (2003) Biotechnology Bioengineering, 82, 62–73.
26. Posten C. (2009) Engineering in Life Sciences, 9(3), 165–77.
27. Huang Q., Jiang F., Wang L. and Yang, C. (2017) Engineering, 3, 318-329.
28. Berzin I. (2005) United States Patent Application, Pub. no.: US2005/0260553 A1, USA, Publication date: Nov. 24, 2005.
29. Pulz O., (2001) Applied Microbiology and Biotechnology, 57(3), 287–293.
30. Tredechi M.R. (1999) Encyclopaedia of Bioprocess technology: Fermentation, biocatalysis and bioseparation Wiley, 395-419.
31. Grima, E.M., Belarbi, E.H. Fernandez, F.G.A., Medina, A.R. and Chisti, Y. (2003) Biotechnology Advance, 20(7-8), 491-515.
32. Choi H.J. and Lee S.M. (2015) Environmental Engineering Research, 20(1), 25-32.
33. Hossain Sharif A.B.M., Salleh, A., Boyce, A.N. and Chowdhury P. (2008) American Journal of Biochemistry and Biotechnology 4(3) 250-254.
34. Mohan T.C., Raghuramudu K., Prasad P.A., Sandya C.R., Shanthanna P and Kumar, P. R. (2017) International Journal of Fisheries and Aquatic Studies, 5(6), 41-46.
35. Banerjee A., Sharma, R., Chisti, Y. and Banerjee, U.C. (2002) Critical Reviews in Biotechnology Chemicals, 22, 245-79.
36. Guschina, I.A., Harwood, J.L. (2006) Progress in Lipid Research, 45, 160–186.
37. Hu, Q., Sommerfeld, M., Jarvis, E., Ghirardi, M., Posewite, M., Seibert, M. and Darzins, A. (2008) Plant Journal, 54, 621– 639.
38. Schenk P.M., Thomas-Hall S.R., Stephens E., Marx U.C., Mussgnug J.H., Posten C., Kruse C.O. and Hankamer B. (2008) Bioenergy Resource 1, 20–43.
39. Dijkstra A.J. (2006) European Journal of Lipid Science Technology, 108(3), 249–264.
40. Belarbi E.H., Grima E.M. and Chisti. Y. (2000) Enzyme Microbial Technology, 26, 516-529.
41. Harun R., Danquah M.K., Gareth M.F. (2010) Journal of Chemical Technology and Biotechnology 85, 199–203.
42. Ragauskas A.J., Charlotte K.W., Brian H.D., George B., John C., Charles E., William J.F., Jason P.H., David J.L., Charles L.L., Jonathan R.M., Richard M., Richard T. and Timothy T. (2006) Science, 311, 484– 489.
43. Sialve B., Bernet N. and Bernard O. (2009) Biotechnology Advance, 27(4), 409-416.
44. Phang S.M., Miah M.S., Yeoh B.G. and Hashim M.A. (2000) Journal of Applied Phycology, 12(3), 395–400.
45. Ueda R., Hirayama S., Sugata K. and Nakayama H. (1996) US Patent 5578,472, 1996.
46. Behera S., Singh R., Arora R., Sharma N. K., Shulka M. and Kumar, S. (2015) Frontiers in Bioengineering and Biotechnology, 2, 90.
47. Scott S.A., Davey M.P., Dennis J.S., Horst I., Howe C.J., Lea Smith D.J. and Smith A.G., (2010) Current Opinion in Biotechnology, 21, 277–286.
48. Solovchenko A., Goldberg I.K., Didi-Cohen S., Cohen Z. and Merzlyak M. (2008) Journal of Applied Phycology, 20, 245-251.
49. Bhatia S.C. (2014) Advanced Renewable Energy Systems, 610.
50. Jarvis E.E., Dunahay T.G. and Brown L.M. (1992) Journal of Phycology, 28, 356-362.
51. Rosenberg J.N., Oyler G.A., Wilkinson L., Betenbaugh M.J. (2008) Current Opinion in Biotechnology, 19, 430–436.
52. Rajkumar R., Yaakob J. and Takriff M.S. (2014) Bioresources, 9(1), 1606-1633.