HIGH YIELD PURIFICATION OF VIABLE WHITE SPOT VIRUS PARTICLES FROM INFECTED PENAEUS MONODON

UBAID QAYOOM1*
1Fish Genetics and Biotechnology Division, ICAR-Central Institute of Fisheries Education, Versova, Andheri West, Mumbai, 400061, Maharashtra, India
* Corresponding Author : uqd2022@gmail.com

Received : 10-10-2022     Accepted : 28-10-2022     Published : 30-10-2022
Volume : 14     Issue : 10       Pages : 11791 - 11793
Int J Agr Sci 14.10 (2022):11791-11793

Keywords : Tiger shrimp, Aquaculture, Virus, Disease
Academic Editor : Dr Gulshan Kumar
Conflict of Interest : None declared
Acknowledgements/Funding : Author is thankful to Fish Genetics and Biotechnology Division, ICAR-Central Institute of Fisheries Education, Versova, Andheri West, Mumbai, 400061, Maharashtra, India
Author Contribution : Sole author

Cite - MLA : QAYOOM, UBAID "HIGH YIELD PURIFICATION OF VIABLE WHITE SPOT VIRUS PARTICLES FROM INFECTED PENAEUS MONODON." International Journal of Agriculture Sciences 14.10 (2022):11791-11793.

Cite - APA : QAYOOM, UBAID (2022). HIGH YIELD PURIFICATION OF VIABLE WHITE SPOT VIRUS PARTICLES FROM INFECTED PENAEUS MONODON. International Journal of Agriculture Sciences, 14 (10), 11791-11793.

Cite - Chicago : QAYOOM, UBAID "HIGH YIELD PURIFICATION OF VIABLE WHITE SPOT VIRUS PARTICLES FROM INFECTED PENAEUS MONODON." International Journal of Agriculture Sciences 14, no. 10 (2022):11791-11793.

Copyright : © 2022, UBAID QAYOOM, Published by Bioinfo Publications. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

Abstract

White spot syndrome caused by white spot syndrome virus (WSSV) is one of the most threatening diseases of shrimp culture industry. Globally, research is being carried out aiming at a better understanding on biology and pathology of WSSV and sub-sequential proper treatment and prevention. An efficient isolation and purification of viral particles is essential for these studies. This study reports a yield purification of viable and virulent WSSV virions from infected Peneaus monodon. The obtained yield was 8.64×1010 WSSV virions per 5 g infected tissue. Additionally, the yield dynamics of the complete process was studied for understanding of copy number variations. The present methodology and the yield-dynamics study of the process will lead to more improvements to WSSV purification in terms of simplicity and efficiency in the future. Moreover, the study will help in identification of the structural proteins of WSSV and shrimp bioassays to reveal the mechanisms of WSSV–host interaction

References

1. FAO (2020) Food and Agriculture Organization of the United Nations, 224.
2. Dey B.K., Dugassa G.H., Hinzano S.M. and Bossier P. (2019) Reviews in Aquaculture, 12(2), 822-865.
3. Lightner D.V. (1996) World Aquaculture Society, LA, USA, 304.
4. Verbruggen B., Bickley L.K., Van Aerle R., Bateman K.S., Stentiford G.D., Santos E.M. and Tyler C.R. (2016) Viruses, 8(1), 23.
5. Lightner D.V., Redman R.M., Pantoja C.R., Tang K.F.J., Noble B.L., Schofield P., Mohney L.L., Nunan L.M. and Navarro S.A. (2012) Journal of invertebrate pathology, 110(2), 174-183.
6. Stentiford G.D., Neil D.M., Peeler E.J., Shields J.D., Small H.J., Flegel T.W., Vlak J.M., Jones B., Morado F., Moss S. and Lotz J. (2012) Journal of invertebrate pathology, 110(2), 141-157.
7. van Hulten M.C., Witteveldt J., Peters S., Kloosterboer N., Tarchini R., Fiers M., Sandbrink H., Lankhorst R.K. and Vlak J.M. (2001) Virology, 286(1), 7-22.
8. Flegel T.W. (2006) Aquaculture, 258, 1-33.
9. Oakey J., Smith C., Underwood D., Afsharnasab M., Alday-Sanz V., Dhar A., Sivakumar S., Hameed A.S., Beattie K. and Crook A. (2019) Archives of virology, 164(8), 2061-2082.
10. Lotz J.M. (1997) World Journal of microbiology and biotechnology, 13(4), 405-413.
11. Wang C.H., Lo C.F., Leu J.H., Chou C.M., Yeh P.Y., Chou H.Y., Tung M.C., Chang C.F., Su M.S. and Kou G.H. (1995) Diseases of aquatic organisms, 23(3), 239-242.
12. Huang C.H., Zhang L.R., Zhang J.H., Xiao L.C., Wu Q.J., Chen D.H. and Li J.K.K. (2001) Virus research, 76(2), 115-125.
13. Xie X., Li H., Xu L. and Yang F. (2005) Virus Research, 108(1-2), 63-67.
14. Gracia?Valenzuela M.H., Coronado?Molina D., Hernández?López J. and Gollas?Galván T. (2009) Aquaculture Research, 40(6), 737-743.
15. Park J.Y., Kim K.I., Joh S.J., Kang J.Y., Kwon J.H., Lee H.S. and Kwon Y.K. (2013) Aquaculture, 410, 225-229.
16. Mendoza-Cano F. and Sánchez-Paz A. (2013) Virology Journal, 10(1), 1-11.