INSECT NEUROPEPTIDES AND G-PROTEIN COUPLED RECEPTORS: NEXT GENERATION PESTICIDES

PRIYANKABEN PATEL1*, DILIP SISODIYA2, RAMJI PARMAR3
1Department of Plant Pathology, B. A. College of Agriculture, Anand Agricultural University, Anand 388 110, Gujarat, India
2Department of Agricultural Entomology, B. A. College of Agriculture, Anand Agricultural University, Anand 388 110, Gujarat, India
3Department of Plant Pathology, B. A. College of Agriculture, Anand Agricultural University, Anand 388 110, Gujarat, India
* Corresponding Author : virrajjilupatel@gmail.com

Received : 02-07-2021     Accepted : 27-07-2021     Published : 30-07-2021
Volume : 13     Issue : 7       Pages : 10825 - 10828
Int J Agr Sci 13.7 (2021):10825-10828

Keywords : Neuropeptides, G Protein Coupled Receptors (GPCRs), pesticides, analogues, insecticide, Juvenile Hormone (JH), Diuretic Hormone (DH)
Conflict of Interest : None declared
Acknowledgements/Funding : Authors are thankful to Department of Plant Pathology, B. A. College of Agriculture, Anand Agricultural University, Anand 388 110, Gujarat, India. Authors are also thankful to Department of Agricultural Entomology, B. A. College of Agriculture, Anand Agricultural University, Anand 388 110, Gujarat, India
Author Contribution : All authors equally contributed

Cite - MLA : PATEL, PRIYANKABEN, et al "INSECT NEUROPEPTIDES AND G-PROTEIN COUPLED RECEPTORS: NEXT GENERATION PESTICIDES." International Journal of Agriculture Sciences 13.7 (2021):10825-10828.

Cite - APA : PATEL, PRIYANKABEN, SISODIYA, DILIP, PARMAR, RAMJI (2021). INSECT NEUROPEPTIDES AND G-PROTEIN COUPLED RECEPTORS: NEXT GENERATION PESTICIDES. International Journal of Agriculture Sciences, 13 (7), 10825-10828.

Cite - Chicago : PATEL, PRIYANKABEN, DILIP SISODIYA, and RAMJI PARMAR. "INSECT NEUROPEPTIDES AND G-PROTEIN COUPLED RECEPTORS: NEXT GENERATION PESTICIDES." International Journal of Agriculture Sciences 13, no. 7 (2021):10825-10828.

Copyright : © 2021, PRIYANKABEN PATEL, et al, Published by Bioinfo Publications. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

Abstract

Farmers choose chemical insecticides due to its rapid knockdown effect on insect-pests. Ultimately, there is increased incidence of pest resurgence, appearance of resistant pest species and residual problem of pesticides. According to the demand of present situation, one such ecofriendly approach is use of insect neuropeptides and their receptors. Neuropeptides initiate their biological effects by binding to different receptors like G-Protein Coupled Receptors (GPCRs). The insect’s major processes viz., behavioural and physiological are being modulated by neuropeptides and GPCRs. In insects, various processes like growth and development, reproduction, energy metabolism and behavioural activities like mating, oviposition, etc. are controlled by neuropeptides and GPCRs. Neuropeptides have been categorized into different groups according to their function such as Diuretic hormone (DH), Adipokinetic hormone (AKH), Eclosion hormone (EH), Pheromone Biosynthesis Activating Neuropeptides (PBAN), Allatotropins (ATT) and Allostatins (AST). Neuropeptides can be used in pest control strategy by developing neuropeptide-based insecticides which are target specific and ecofriendly

References

1. Sparks T.C. and Nauen R. (2015) Pesticide Biochemistry and Physiology, 121, 122-128.
2. Zhang H., Bai J., Huang S., Liu H. and Hou Y. (2020) Frontiers in Physiology, 11, 159.
3. Burbach J. P. H. (2011) What are neuropeptides? In Neuropeptides, Humana Press, 2011, 1-36.
4. Starratt A. N. and Brown B. E. (1975) Life Sciences, 17(8), 1253-1256.
5. Stone J. V., Mordue W., Batley K. E. and Morris H. R. (1976) Nature, 263(5574), 207-211.
6. Raina A. K., Jaffe H., Kempe T. G., Keim P., Blacher R. W., Fales H. M., Riley C. T., Klun J. A., Ridgway R. L. and Hayes D K (1989) Science, 244(4906), 796-798.
7. Yeoh J. G., Pandit A. A., Zandawala M., Nassel D. R., Davies S. A. and Dow J. A. (2017) Insect Biochemistry and Molecular Biology, 86, 9-19.
8. Agrawal P., Kumar S., Singh A., Raghava G.P. and Singh I. K. (2019) Scientific reports, 9(1), 1-12.
9. Ji T. H., Grossmann M. and Ji I. (1998) Journal of biological chemistry, 273(28), 17299-17302.
10. Perez D. M. and Karnik S. S. (2005) Pharmacological Reviews, 57(2), 147-161.
11. Stay B. and Tobe S. S. (2007) Annual Review of Entomology, 52, 277-299.
12. Fitches E., Audsley N., Gatehouse J. A. and Edwards J. P. (2002) Insect Biochemistry and Molecular Biology, 32(12), 1653-1661.
13. Kai Z. P., Huang J., Tobe S. S. and Yang X. L. (2009) Peptides, 30(7), 1249-1253.
14. Huang S. S., Chen S. S., Zhang H. L., Yang H., Yang H. J., Ren Y. J. and Kai Z. P. (2018) Journal of Agricultural and Food Chemistry, 66(14), 3644-3650.
15. Clark A. C., del Campo M. L. and Ewer J. (2004) Journal of Neuroscience, 24(17) 4283-4292.
16. Arakane Y., Li B., Muthukrishnan S., Beeman R. W., Kramer K. J. and Park Y. (2008) Tribolium castaneum, Mechanisms of Development, 125(11-12), 984-995.
17. Bai H., Zhu F., Shah K. and Palli S. R. (2011) Bmc Genomics, 12(1), 1-11.
18. Coast G. M. and Schooley D. A., Handbook of Biologically axtive peptides. Kastin A J (ed). Academic Press, 2013.
19. Zhang C., Qu Y., Wu X., Song D., Ling Y. and Yang X. (2015) Peptides, 68, 233-238.
20. Alford L., Marley R., Dornan A., Pierre J. S., Dow J. A., Nachman R. J. and Davies S. A. (2019) Pest management science, 75(6), 1750-1759.
21. Gui S. H., Taning C. N., De Schutter K., Yang Q., Chen P., Hamshou M., Nachman R. J., Pandit A. A., Dow J. A. T., Davies S. and Smagghe G. (2020) Pest Management Science, 76(10), 3451-3458.
22. Belles X. and Maestro J. L. (2005) Invertebrate Reproduction & Development, 47(1), 23-37.
23. Altstein M. (2004) Journal of Molecular Neuroscience, 22(1), 147-157.
24. Christensen T. A., Itagaki H., Teal P. E., Jasensky R. D., Tumlinson J. H. and Hildebrand J. G. (1991) Proceedings of the National Academy of Sciences, 88(11), 4971-4975.
25. Lee D. W., Shrestha S., Kim A. Y., Park S. J., Yang C. Y., Kim Y. and Koh Y. H. (2011) Insect Biochemistry and Molecular Biology, 41(4), 236-243.
26. Gregoriou M. E. and Mathiopoulos K. D. (2020) Archives of Insect Biochemistry and Physiology, 104(2), e21665.
27. Socha R., Kodrik D. and Zemek R. (1999) Naturwissenschaften, 86(2), 85-86.
28. Milde J. J., Ziegler R. O. L. F. and Wallstein M. A. R. K. U. S. (1995) Journal of Experimental Biology, 198(6), 1307-1311.
29. Goldsworthy G., Mullen L., Opoku?Ware K. and Chandrakant S. (2003) Physiological Entomology, 28(1), 54-61.
30. Bednarova A., Krishnan N., Cheng I. C., Vecera J., Lee H. J. and Kodrik D. (2013) Physiological Entomology, 38(1), 54-62.
31. Lu K., Wang Y., Chen X., Zhang X., Li W., Cheng Y., Li Y., Zhou J., You K., Song Y. and Zhou Q. (2019) Frontiers in physiology, 9, 1904.
32. Gautam U. K., Hlavkova D., Shaik H. A., Karaca I., Karaca G., Sezen K. and Kodrik D. (2020) Pathogens, 9(10), 801.
33. Altstein M. and Nassel D. R. (2010) Neuropeptide signaling in insects, Neuropeptide Systems as Targets for Parasite and Pest Control, 155-165.
34. Zhang Q., Nachman R. J., Kaczmarek K., Kierus K., Zabrocki J. and Denlinger D. L. (2015) Insect Biochemistry and Molecular Biology, 67, 87-93.