GENERATION MEAN ANALYSIS FOR SHEATH BLIGHT DISEASE RESISTANCE AND YIELD-RELATEDTRAITS IN RICE (Oryza sativa L.)

S.K. GHRITLAHRE1*, S.K. PRADHAN2, MAHESH RAO3, P.K. SINGH4
1Department of Genetics and Plant Breeding, Institute of Agricultural Sciences, Varanasi, Uttar Pradesh, 221005, India
2Crop Improvement Division,ICAR- National Rice Research Institute-Regional Research Station, Gerua, Assam, India
3ICAR-National Research Centre on Plant Biotechnology, Pusa, Delhi, 110012 India
4Department of Genetics and Plant Breeding, Institute of Agricultural Sciences, Varanasi, Uttar Pradesh, 221005, India
* Corresponding Author : surenpb2008@gmail.com

Received : 21-06-2018     Accepted : 23-06-2018     Published : 30-06-2018
Volume : 10     Issue : 12       Pages : 6481 - 6484
Int J Agr Sci 10.12 (2018):6481-6484

Keywords : Sheath blight resistance, Percent of disease severity, Segregation populations, Gene effects, Epistasis, Rice, Grain yield, Amylase content
Conflict of Interest : None declared
Acknowledgements/Funding : Author thankful to the Director, National Rice Research Institute (NRRI) - Cuttack for providing land, labour and guidance for conducting off-season trail while pursuing Ph.D.
Author Contribution : All author equally contributed

Cite - MLA : GHRITLAHRE, S.K., et al "GENERATION MEAN ANALYSIS FOR SHEATH BLIGHT DISEASE RESISTANCE AND YIELD-RELATEDTRAITS IN RICE (Oryza sativa L.)." International Journal of Agriculture Sciences 10.12 (2018):6481-6484.

Cite - APA : GHRITLAHRE, S.K., PRADHAN, S.K., RAO, MAHESH, SINGH, P.K. (2018). GENERATION MEAN ANALYSIS FOR SHEATH BLIGHT DISEASE RESISTANCE AND YIELD-RELATEDTRAITS IN RICE (Oryza sativa L.). International Journal of Agriculture Sciences, 10 (12), 6481-6484.

Cite - Chicago : GHRITLAHRE, S.K., S.K. PRADHAN, MAHESH RAO, and P.K. SINGH. "GENERATION MEAN ANALYSIS FOR SHEATH BLIGHT DISEASE RESISTANCE AND YIELD-RELATEDTRAITS IN RICE (Oryza sativa L.)." International Journal of Agriculture Sciences 10, no. 12 (2018):6481-6484.

Copyright : © 2018, S.K. GHRITLAHRE, et al, Published by Bioinfo Publications. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

Abstract

The In order to study the mode of gene action for sheath blight resistance and yield related traits a cross was made. Five populations viz., P1, P2, F1, F2, and F3 were derived from the cross between high yielding susceptible rice variety ‘Swarna sub-1’ and resistant line ‘Tetep’. The sheath blight susceptible high yielding variety Swarna sub-1 showed high disease severity (60.46%) compared with resistant parent Tetep (17.72%) whereas intermediate disease severity was observed in F1 and three segregating populations. Among F1, F2 and F3 population, F1 showed less disease severity (20.09%) than F2 and F3 populations. The Swarna sub-1 recorded higher grain yield per plant compared with Tetep while the F1 yielded more grain yield compared with the donor parent but less than the recurrent parent, but in the two segregating populations (F2 and F3), grain yield per plant were intermediate than non-segregating generations. All the traits related to yield as well as sheath blight resistance were significant in either one of the scales or in combination representing the existence of epistatic interactions between the genes involved. The dominance (h) and dominance × dominance (l) gene effects displayed opposite sign for the traits number of reproductive tillers per plant, plant height, days to maturity, length and breadth ratio after cooking and gel consistency indicating duplicate epistasis while complementary for days to heading, panicle length, weight of panicle, number of spikelets per panicle, test weight, yield per plant, length and breadth ratio before cooking, amylose content and per cent disease severity.

References

1. Channamallikarjuna V., Sonah H., Prasad M., Rao G.J.N., Chand S., Upreti H.C., Singh N.K. and Sharma T.R. (2010) Mol. Breed. 25: 155-166.
2. Chen Z.X., Zhang Y.F., Feng F., Feng M.H., Jiang W., Ma Y.Y., Pan C.H., Hua H.L., Li G.S., Pan X. B. and Zuo S.M. (2014) Field Crops Research, 161: 118-127.
3. Divya B., Biswas A., Robin S., Rabindran R. and Joel A.J. (2014) J. Genet. 93(2): 415-424.
4. Eizenga G.C., Lee F.N., and Rutger J.N. (2002) Plant Dis. 68(7): 808-812.
5. Falconer D.S. (1989) Harlow, UK, pp. 463.
6. Hayman B.I.(1958) Heredity 12: 371-390.
7. Hayman B.I. and Mather K. (1955) Biometrics 16: 369-381.
8. Jinks J.L. and Jones R.M. (1958) Genetics 43: 223-234.
9. Li L., Kaiyang L., Zhaoming C., Tongmin M., Zhongli H. and Xinqi L. (2010) Mol. Genet. Genomics 284: 383-397.
10. Li Z., Pinson S.R.M., Marchetti M.A., Stansel J.W. and Park W.D. (1995) Theor Appl Genet., 91:382- 388.
11. Malmberg R.L. and Mauricio R. (2005) Genet Res., (Camb) 86:89-95.
12. Mather K. and Jinks J.L. (1971) Chapman and Hall, London, UK, pp. 215.
13. Mather K. and Jinks J.L. (1982) Chapman and Hall, London, UK, pp. 320.
14. Mather K. (1949) Dover Publication, Inc., New York.
15. Moreau L., Charcosset A., Hospital F. and Gallais A. (1998) Genetics 148:1353-1365.
16. Pan X.B., Rush M.C., Sha X.Y., Xie Q.J., Linscombe S.D., Stetina S.R. and Oard J.H. (1999) Crop Sci., 39:338-346.
17. Pandian R.T.P., Sharma P., Singh V.K., Singh A., Ellur R.K., Singh A.K. and Singh U.D. (2012) Indian Phytopathol65:233-237.
18. Paul C.P., Nag N.Q. and Ladeinde T.A. (2003) Afri. Crop Sci. J. 11: 143-150.
19. Phillips P.C. (1998) Genetics 149: 1167-1171.
20. Pinson R.M.S., Capdevielle M.F. and Oard H.J. (2005) Crop Sci. 45: 503-510.
21. Ray P.K.S. and Islam M.A. (2008) Bangladesh J. Agric. Res. 33: 519-529.
22. Reddy M.R., Raju C.S., Sravani D., Reddy T.D. and Reddy G.N. (2012) Ann. Biol. Res. 3 (6): 2662-2666.
23. Savary S. and Mew T.W. (1996) Kluwer Academic Publisher, Dordrecht, Netherlands, pp 237-245.
24. Sha X.Y. and Zhu L.H. (1989) Int Rice Res Newslett., 15:7-8.
25. Sharifi P., Dehghani H., Ali M. and Mohammad M. (2011) Iranian J. Field Crop Sci. 42: 164-170.
26. Singh A.K., Singh P.K., Ram M., Kumar S., Arya M., Singh N.K. and Singh U.S. (2016) SABRAO Journal of Breeding and Genetics, 48(1): 50-60.
27. Singh A.K., Singh P.K., Singh R.K., Saini R. and Ram M. (2015b). Res. Env. Life Sc., 8(3):
28. Singh A.K., Singh V.K., Singh A., Ellur R.K., Pandian R.T.P., Gopala Krishnan S., Singh U.D., Nagarajan M., Vinod K.K. and Prabhu K.V. (2015a) Euphytica ., 203:97–107.
29. Thirugnanakumar S., Narassiman R., Senthil N., Eswaran R. and Kumar C.P. (2007) Crop Imp. 34: 19-23.
30. Tinker N.A. and Mather D.E. (1995) J Agric Genom1:1–16.
31. Wang C., Wen G., Lin X., Liu X. and Zhang D. (2009) Eur. J. Plant Pathol., 123: 235-240.
32. Zou J.H., Pan X.B., Chen Z.X., Xu J.Y., Lu J.F., Zhai W.X. and Zhu L.H. (2000) Theor Appl Genet., 101:569-573.