IN VITRO CYTOTOXICITY ANALYSIS OF NITROGEN DOPED GRAPHENE OXIDE HYDROXYAPATITE NANOCOMPOSITE (N2-GO-HA NC) IN CAPRINE WHARTONS JELLY DERIVED MESENCHYMAL STEM CELLS (WJ-MSCs) AND BLOOD CELLS

S.A. DHENGE1, N.E. GADE2*, O.P. MISHRA3, N. RAWAT4, V. SINGH5, A. SRIVASTAVA6
1Department of Veterinary Physiology & Biochemistry, College of Veterinary Science & Animal Husbandry, Chhattisgarh Kamdhenu Vishwavidyalaya, Durg, 491001, India
2Department of Veterinary Physiology & Biochemistry, College of Veterinary Science & Animal Husbandry, Chhattisgarh Kamdhenu Vishwavidyalaya, Durg, 491001, India
3Department of Veterinary Physiology & Biochemistry, College of Veterinary Science & Animal Husbandry, Chhattisgarh Kamdhenu Vishwavidyalaya, Durg, 491001, India
4Department of Veterinary Microbiology, College of Veterinary Science & Animal Husbandry, Chhattisgarh Kamdhenu Vishwavidyalaya, Durg, 491001, India
5Department of Physics, Banaras Hindu University, Banaras, 221005 India
6Department of Physics, Banaras Hindu University, Banaras, 221005 India
* Corresponding Author : nitingadeivri@gmail.com

Received : 11-06-2018     Accepted : 22-06-2018     Published : 30-06-2018
Volume : 10     Issue : 12       Pages : 6387 - 6391
Int J Agr Sci 10.12 (2018):6387-6391

Keywords : WJ-MSCs, blood cells, caprine, nanotoxicity, stem cells
Conflict of Interest : None declared
Acknowledgements/Funding : Author thankful to College of Veterinary Science & Animal Husbandry, Chhattisgarh Kamdhenu Vishwavidyalaya, Anjora, Durg, 491 001, India. This research was supported by Development grant provided by Agriculture Education Division, ICAR, New Delhi
Author Contribution : All author equally contributed

Cite - MLA : DHENGE, S.A., et al "IN VITRO CYTOTOXICITY ANALYSIS OF NITROGEN DOPED GRAPHENE OXIDE HYDROXYAPATITE NANOCOMPOSITE (N2-GO-HA NC) IN CAPRINE WHARTONS JELLY DERIVED MESENCHYMAL STEM CELLS (WJ-MSCs) AND BLOOD CELLS." International Journal of Agriculture Sciences 10.12 (2018):6387-6391.

Cite - APA : DHENGE, S.A., GADE, N.E., MISHRA, O.P., RAWAT, N., SINGH, V., SRIVASTAVA, A. (2018). IN VITRO CYTOTOXICITY ANALYSIS OF NITROGEN DOPED GRAPHENE OXIDE HYDROXYAPATITE NANOCOMPOSITE (N2-GO-HA NC) IN CAPRINE WHARTONS JELLY DERIVED MESENCHYMAL STEM CELLS (WJ-MSCs) AND BLOOD CELLS. International Journal of Agriculture Sciences, 10 (12), 6387-6391.

Cite - Chicago : DHENGE, S.A., N.E. GADE, O.P. MISHRA, N. RAWAT, V. SINGH, and A. SRIVASTAVA. "IN VITRO CYTOTOXICITY ANALYSIS OF NITROGEN DOPED GRAPHENE OXIDE HYDROXYAPATITE NANOCOMPOSITE (N2-GO-HA NC) IN CAPRINE WHARTONS JELLY DERIVED MESENCHYMAL STEM CELLS (WJ-MSCs) AND BLOOD CELLS." International Journal of Agriculture Sciences 10, no. 12 (2018):6387-6391.

Copyright : © 2018, S.A. DHENGE, et al, Published by Bioinfo Publications. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

Abstract

Present study was designed to analyze in vitro cytotoxicity of different concentrations of Nitrogen dope Graphene Oxide Hydroxyapatite nanocomposites (N2-GO-HA NC) in caprine WJ-MSCs and blood cells. Caprine WJ-MSCs were isolated cultured, characterized and propagated for evaluating nanotoxicity by studying cell morphology, cell viability, growth kinetic, PDT, MTT, hemolysis and CBC assays. Caprine WJ-MSCs after 24 hrs, 48 hrs and 72 hrs exposure with 100 and 50 µg/ml of N2-GO-HA NC showed significant decrease in viable cell number and alterations in cell morphology whereas with 25 and 10 µg/ml of N2-GO-HA NC no significant alteration in cell morphology but significant (P<0.01) increased in cell viability was observed. Similar trend was observed in cell growth kinetics study where significant (P<0.05) decrease in cell growth with increased PDT is estimated in 100 and 50 µg/ml however exposure to 25 and 10 µg/ml doses resulted in significant (P<0.05) increase in growth of caprine WJ-MSCs as compared to control group. MTT assay in caprine WJ-MSCs exposed to 100 and 50 µg/ml of N2-GO-HA NC also revealed significant (P<0.01) decrease in cell number as compared to 25, 10 and 0 µg/ml doses. Hemolysis assay pointed out significant (P<0.01) hemolysis in caprine RBCs exposed to 100 µg/ml dose as compared with 50, 25, 10 and 0 µg/ml doses of N2-GO-HA NC. However, RBCs, WBCs and platelets count were altered non-significantly in 100, 50, 25 and 10µg/ml doses of N2-GO-HA NC as compared to control. The report concludes that higher doses (100 and 50 µg/ml) of N2-GO-HA induce significant toxicity to Caprine WJ-MSCs as well as blood cells (100 µg/ml), however at lower doses (25 and 10 µg/ml) slight growth enhancing effects were observed

References

1. Nikalje A. P. (2015) Medical Chemistry, 5 (2), 81-89.
2. Agrawal S. and Rathore P. (2014) International Journal of Current Microbial Applied Science, 3(3), 43-55.
3. Seyedjafari E., Soleimani M., Ghaemi N. and Sarbolouki M. N. (2010) Journal of Material Science:Material Medicine 22(1),165-174. 
4. Bahadar H., Faheem M., Kamal N. and Mohammad A. (2016) Iranian Biomed Journal,20(1),1-11.
5. Estelrich J., Escribano E., Queralt J. and Busquets M. A. (2015) International Journal of Molecular Science,16, 8070-8101.
6. Green J. J., Zhou B. Y., Mitalipova M. M., Beard C., Langer R., Jaenisch R. and Anderson D. G. (2008) Nano Letter, 8, 3126-3130.
7. Lobatto M. E., Calcagno C., Metselaar J. M., Storm G., Stroes E.S., Fayad Z. A. and Mulder W. J. (2012) Methods Enzymol,508, 211-228.
8. Koh I. and Josephson L. (2009) Sensors, 9, 8130-8145.
9. Patil U.S., Qu H. Caruntu D. O., Connor C. J., Sharma A., Cai Y. and Tarr M. A. (2013) Bioconjugate Chemistry, 24,1562-1569.
10. Sawdon A., Weydemeyer E. and Peng C. A. (2014) Journal of Biomedical Nanotechnology, 10, 1894-1917.
11. Jayakumar R., Ramachandran R., Divyarani V. V., Chennazhi K. P., Tamura H. and Nair S. V. (2011) International Journal of Biological Macromolecular,48, 336-344.
12. Krishna L., Dhamodaran K., Jayadev C., Chatterjee K. Shetty, R., Khora S. and Das D. (2016) Stem Cell Research & Therapy, 7,188.
13. Chao K. C., Chao K. F., Fu Y. S. and Liu S. H. (2008)PLoS ONE.3(1), e1451.
14. Noort W. A, Feye D., Akker F., Stecher D., Chamuleau S. A., Sluijter J. P. and Doevendans P. A. (2010) Panminerva Medica,52,27-40.
15. Weiss M. L., Medicetty S., Bledsoe A. R., Rachakatla R. S., Choi M., Merchav S., Luo Y., Rao M. S., Velagaleti G. and Troyer D. (2006) Stem Cells,24(3),781-792.
16. Yan Y., Xu W., Qian H., Si Y., Zhu W., Cao H., Zhou H. and Mao F. (2009) Liver International,29(3),356-365.
17. Batsali A. K., Kastrinaki M. C., Papadaki H. A. and Pontikoglou C. (2013) Current Stem Cell Research & Therapy, 8(2),144-155.
18. Yadegar M., Hekmatimoghaddam S. H., Saridar S. N. and Ali J. (2015) Iranian Journal of Reproduction Medicine, 13(3),141-148.
19. Nguyen K. T. (2013) Journal of Nonmedical Nanotechnology,4, 128.
20. Kaur S. and Singhal, B. (2012)Journal of Bioscience and Bioenergy,113(1):1-4.
21. Parak W. J., Gerion D., Pellegrino T., Zanchet D., Micheel C., Williams C. S., Boudreau R., LeGros M. A., Larabell C. A and Alivisatos A. P. (2003) Nanotechnology,14(7),15-27.
22. Elkhenany H., Lisa, A., Andersen L., ShawnB., Mark C., Nancy N., Enkeleda D., Oshin D. Alexandru S., Biris D. A. and Dhar M. (2015) Journal of Applied Toxicology, 35, 367-374.
23. Arghya N. B. (2016) Global Journal of Nanomedicine, 1(1),555552.
24. Nishida E., Miyaji H., Takita H., Kanayama I., Tsuji M., Akasaka T., Sugaya T., Sakagami R. and Kawanami M. (2016) International Journal of Nanomedicine, 11, 2265-2277.
25. Yang Y., Asiri A.M., Tang Z., Du D. and Lin Y. (2013) Materials Today, 16(10), 365-373.
26. Wang H., Maiyalagan T. and Wang X. (2012) ACS Catalysis, 2(5),781-794.
27. Dar R. M., Gade N. E., Mishra O. P., Khan J. R., Vinod K. and Patiyal A. (2015) Journal of Cell& Tissue Research,15(1),4703-4710.
28. Gade N. E., Dar R. M. Mishra O. P., Khan J. R., Vinod K. and Patyal A. (2015) Journal of Animal Research, 5(3),415-421.
29. Kim S., Sook H. K., Lim S.Y., Kim J. H. and Park C. B. (2011) Advanced Materials,23(17),2009-2017.
30. Wang J., Sun P., Bao Y., Liu J. and An L. (2011) Toxicology In vitro, 25(1),242-250.
31. Nayak T. R., Henrik A., Venkata S. M., Clement K., Sukang B., Xiangfan X., Pui L. R., Jong H. A., Byung H. H., Giorgia P. and Barbaros O. (2011)ACS Nano.5(6),4670-4678.
32. Wadhwa S., Rea C., Hare P. O., Mathur A., Roy S. S., Dunlop P. S., Byrne J. A., Burke G., Meenan B. and McLaughlin J. A. (2011) Journal of Hazardous Materials, 191(1-3),56-61.
33. Rodriguez L. N., Romero P., Estivill T. G., Guzma V. R. and Aguirre J. A. (2017) PLoSONE.12(3), e0173978.
34. Liu Y., Huang J. and Li H. (2013) Journal of Materials Chemistry B,1(13),1826-1834.
35. Baradaran S., Moghaddam E., Basirun W. J., Mehrali M., Sookhakian M., Hamdi M., Nakhaei-Moghaddam M. R. and Alias Y. (2014) Carbon, 69, 32-45.
36. Liu Y., Dang Z., Wang Y., Huang J. and Li H. (2014) Carbon, 67,250-259.
37. Babaei H., Moshrefi M., Golchin M. and Mematollahi-Mahani S. N. (2008) Iranian Journal of Veterinary Surgery, 3(2),57-65.
38. Bregoli L., Chiarini F., Gambarelli A., Sighinolfi G., Gatti A. M., Santi P., Martelli A. M. and Cocco L. (2009) Toxicology, 262(2),121-129.
39. Vinjamuri S., Shanker D., Rao S. R. and Nagarajan S. (2015) World Journal of Pharmacy and Pharmacetical Sciences, 4(7):1263-1268.
40. Moshrefi M., Babaei H., and Nematollahi-Mahani S. N. (2010) Animal Reproduction, 7(4),367-372.
41. Remya V. Naveen K., Ninu A. R., Radhika S., Kutty M. V. H. and Maity S. K. (2014) Indian Journal of Science Research &Technology2(3),60-62.
42. Somal A., Bhat I. A., Indu,B., Pandey S., Panda B. S. K., Thakur N., Sarkar M., Chandra V., Saikumar G. and Sharma G. T. (2016) PLoSONE.11(6),1-17. e0156821.
43. Nair, M., Nancy, D., Krishnan, A. G., Anjusree, G. S., Vadukumpully, S. and Nair, S. V. (2015) Nanotechnology, .26(16),161001.
44. Lee J. H., Shin Y. C., Lee S. M., Jin O. S., Kang S. H., Hong,S. W., Jong C. M., Huh J. B. and Hon D. W. (2015) Scientific Reports,5,18833.
45. Szczypta A. F., Menaszek E., Syeda T. M., Mishra A., Alavijeh M., Adu J. and and Blazewicz S. (2012) Journal of Nanoparticle Research, 14,1181.
46. Figarol A., Jeremie P., Delphine B., Valerie F., Celine A., Jean M. T., Jean P. L., Michele C., Didier B. A. and Philippe G. (2015) Journal of Toxicology In vitro,9(14).
47. Li M., Liu Q., Jia Z., Xu X., Cheng Y., Zheng Y., Xi T. and Wei S. (2014) Carbon, 67,185-197.
48. Gade N. E., Pratheesh M. D., Nath A., Dubey P. K., Amarpal Sharma B., Saikumar G. and Sharma G. T. (2012)Reproduction in Domestic Animals, 48(3),358-367.
49. Lim H. N., Huang N. M., Lim S. S., Harrison I. and Chia C. H. (2011) International Journal of Nanomedicine, 6,1817-1823.
50. Czarnecki J. S., Lafdi K. and Tsonis P. A. (2008) Biology Faculty Publications. Paper 12.
51. Kim H., Namgung R., Singha K., Oh I. K. and Kim W. J. (2011) Bioconjugate Chemistry 22(12),2558-2567.
52. Sreejith S., Ma X. and Zhao Y. (2012)Journal of American Chemical Society,134 (42),17346-17349.
53. Olteanu D., Filip V., Socaci V., Biris A. R., Filip X., Coros M., Rosu M. C., Pogacean F., Alb C., Baldea I., Bolfa P. and Pruneanu S. (2015) Colloids Surface B:Biointerfaces, 136,791-798.
54. Choi J., Reipa V., Hitchins V. M., Goering P.L., and Malinauskas R. A. (2011) Toxicological Sciences, 123(1),133-143.
55. Laloy J., Minet V., AlpanL., Mullier F., Beken S., Toussaint O., Lucas S. and Dogne J. M. (2014)Nanobiomedicine, 1,4.
56. Zhao Y., Sun X., Zhang G., Trewyn B. G., Slowing S. I. and Lin S. Y. (2011) ACS Nano,5(2),1366-1375.
57. Ghosh M., Chakraborty A. and Mukherjee A. (2013) Journal of Applied Toxicology, 33(10),1097-1110.
58. Donkor A. D., Su Z., Mandal H. S., Jin X. and Tang X. (2009) Nano Research, 2,517-525.