BIOFORTIFIED FOOD CROPS - AN APPROACH FOR ENHANCED NUTRITION

ASIMA GAZAL1*, ZAHOOR AHMED DAR2, AJAZ2 AHMAD LONE3, SHABIR H. WANI4
1Division of Genetics & Plant Breeding, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Jammu, 180009, Jammu and Kashmir
2Dry land Agricultural Research Station, Budgam, 190010, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Jammu, Jammu and Kashmir
3Dry land Agricultural Research Station, Budgam, 190010, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Jammu, Jammu and Kashmir
4Dry land Agricultural Research Station, Budgam, 190010, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Jammu, Jammu and Kashmir
* Corresponding Author : asimagazal@gmail.com

Received : 24-03-2018     Accepted : 28-03-2018     Published : 30-03-2018
Volume : 10     Issue : 6       Pages : 5645 - 5648
Int J Agr Sci 10.6 (2018):5645-5648

Keywords : Breeding Crops, Micronutrient Malnutrition, Anemia, Bioavailability, Zinc Iron
Academic Editor : Santhosh D B
Conflict of Interest : None declared
Acknowledgements/Funding : Author thankful to Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Jammu, 180009, Jammu and Kashmir
Author Contribution : All author equally contributed

Cite - MLA : GAZAL, ASIMA, et al "BIOFORTIFIED FOOD CROPS - AN APPROACH FOR ENHANCED NUTRITION." International Journal of Agriculture Sciences 10.6 (2018):5645-5648.

Cite - APA : GAZAL, ASIMA, DAR, ZAHOOR AHMED, LONE, AJAZ2 AHMAD, WANI, SHABIR H. (2018). BIOFORTIFIED FOOD CROPS - AN APPROACH FOR ENHANCED NUTRITION. International Journal of Agriculture Sciences, 10 (6), 5645-5648.

Cite - Chicago : GAZAL, ASIMA, ZAHOOR AHMED DAR, AJAZ2 AHMAD LONE, and SHABIR H. WANI. "BIOFORTIFIED FOOD CROPS - AN APPROACH FOR ENHANCED NUTRITION." International Journal of Agriculture Sciences 10, no. 6 (2018):5645-5648.

Copyright : © 2018, ASIMA GAZAL, et al, Published by Bioinfo Publications. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

Abstract

The development of human potential is hindered by micronutrient deficiencies and the nation’s social and economic development gets impaired. The major organizations viz., World Health Organization (WHO) and Consultative Group on International Agricultural Research (CGIAR) are working on malnutrition on high priority basis. CGIAR group focus on biofortification through its Harvest Plus Program. Micronutrient content of the staple crops of the poor population viz., rice, wheat, maize, beans, cassava and sweet potatoes have been improved through breeding and biotechnological approaches. Biofortification is breeding crops for improvement in nutritional value achieved through either agronomic practices or through genetic breeding, or through bioengineering. It focuses on developing nutritious plant foods, rather than having nutrients added at the time of food processed. This is an agricultural approach that can improve human nutrition on a global scale. Agronomic biofortification is considered a short-term and complementary strategy, but economic analyses suggest that genetic biofortification is the most effective strategy for increasing dietary iron and zinc intakes of vulnerable populations. Enrichment of cereal grains by breeding is a high-priority area of research, and an effective strategy among other approaches, e.g., fortification, supplementation and food diversification. This review discusses the potential strategies for developing iron and zinc biofortified crops and their importance in human nutrition.

References

1. Bouis H. and Islam Y. (2011) Leveraging Agriculture for improving nutrition and health.
2. Modestine K.S., Gouado M.I., Mananga M.J., DJeukeu Asongni W., Henri P., AmWam Zollo P.H., O Berleas D. and Tetanye E. (2012) J. Trace Elem. Med. Biol., 26, 201-204.
3. Pérez-Massot E., Banakar R., Gómez-Galera S., Zorrilla-López U., Sanahuja G., Arjó G., Miralpeix B., Vamvaka E., Farré G. and Rivera S.M. (2013) Genes Nutr., 8, 29-41. 

4. Farre G., Twyman R.M.; Zhu C., Capell T. and Christou P. (2011) Curr. Opin. Biotechnol., 22, 245–251.
5. Pachón H., Ortiz D.A., Araujo C., Blair M.W. and Restrepo J. (2009) J. Food Sci., 74, H147–H154.
6. Gilani G.S. and Nasim A. (2007) J. AOAC Int., 90, 1440-1444.
7. FAO. (2013) The State of Food Insecurity in the World, Executive Summary; FAO: Rome, Italy, 2013.

8. Von Grebmer K., Saltzman A., Birol E., Wiesmann D., Prasai N., Yin S., Yohannes Y., Menon P., Thompson J. and Sonntag A. (2014) International Food Policy Research Institute: Washington, DC, USA.
9. Bazuin S., Azadi H. and Witlox F. (2011) Biotechnol. Adv., 29, 908–912.
10. Kershen D.L. (2010) New Biotechnol., 27, 623–627. 

11. Das J.K., Kumar, R., Salam, R.A. and Bhutta, Z.A. (2013) Ann. Nutr. Metab., 62 (Suppl. 1), 44–56. 

12. Bhutta Z.A., Salam R.A. and Das J.K. (2013) Br. Med. Bull., 106, 7–17. 

13. Cakmak I. (2008). Plant Soil 302: 1-17.
14. White P.J. and Broadley M.R. (2011) Front. Plant Sci., 2, 80.
15. Cakmak I., Pfeiffer W.H. and Mcclafferty B. (2010) Cereal Chem., 87, 10-20.
16. Shahzad Z., Rouached H. and Rakha, A. (2014) Comprehen Rev Food Safety 13 (3),329-346.
17. Murgia I., Arosio P., Tarantino D. and Soave C. (2012) Trends Plant Sci., 17(1), 47-55.
18. Bouis, H.E. and Welch, R.M. (2010) Crop Sci., 50, 20-32.

19. Palmgren M.G., Clernens S., Williams I.E., Kramer U., Borg S., Schjarring J.K. and Sanders D. (2008) Trends Plant Sci., 13, 464- 473.
20. Hirschi K.D. (2009) Annu. Rev. Nutr., 29, 401-421.
21. Lee S., Jeon U.S., Lee S.J., Kim Y.K., Persson D.P., Husted S., Schjorring J.K., Kakei Y., Masuda H., Nishizawa N.K. and An G. (2009) Proc. Natl. Acad. Sci. USA, 106, 22014-22019.
22. Aizatwan M., Preuss J.M., Johnson A.A.T., Tester M.A. and Schultz C.J. (2011) Physiol. Plant, 143, 271-286.
23. Drakakaki G., Marcel S., Glahn R.P., Lund E.K., Pariagh S., Fischer R., Christou P. and Stoger E. (2005) Plant Mol. Biol., 59, 869-880.
24. Gaj T., Charles A., Gersbach C.A. and Barbas C.F. (2013) Trends Biotechnol., 31, 397–405. 

25. Jankele R. and Svoboda P. (2014) Brief. Funct. Genomics, 13, 409–419.
26. Puchta H. and Fauser F. (2013) Int. J. Dev. Biol., 57, 629–637.
27. Gurushidze M., Hensel G., Hiekel S., Schedel S., Valkov V. and Kumlehn J. (2014) PLoS One, 9, e92046, doi:10.1371/journal.pone.0092046. 

28. Liang Z., Zhang K., Chen K. and Gao C. (2014) J. Genet. Genomics, 41, 63–68. 

29. Zhang Y., Zhang F., Li X., Baller J.A., Qi Y., Starker C.G., Bogdanove A.J. and Voytas D.F. (2013) Plant Physiol., 161, 20–27, doi:10.1104/pp.112.205179. 

30. Shukla V.K., Doyon Y., Miller J.C., DeKelver R.C., Moehle E.A., Worden S.E., Mitchell J.C., Arnold N.L., Gopalan S. and Meng X. (2009) Nature, 459, 437–441. 

31. Townsend J.A., Wright D.A., Winfrey R.J., Fu F., Maeder M.L., Joung J.K. and Voytas D.F. (2009) Nature, 459, 442–445.
32. Zhu C., Naqvi S., Gomez-Galera S., Pelacho A.M., Capelland T. and Christou P. (2007) Trends Plant Sci., 12, 548–555. 

33. Mayer J.E., Pfeiffer W.H. and Beyer P. (2008) Curr. Opin. Plant Biol., 11, 166–170. 

34. Bouis H.E., Hotz C., McClafferty B., Meenakshi J.V. and Pfeiffer W.H. (2011) Food Nutr. Bull., 32 (Suppl. 1), S31–S40. 

35. Sperotto R.A., Ricachenevsky F.K., Waldow Vde A. and Fett J.P. (2012) Plant Sci., 190, 24–39. 

36. Al-Babili S. and Beyer P. (2005) Trends Plant Sci., 10, 565–573. 

37. Paine J.A., Shipton C.A., Chaggar S., Howells R.M., Kennedy M.J., Vernon, G., Wright S.Y., Hinchliffe E., Adams J.L. and Silverstone A.L. (2005) Nat. Biotechnol., 23, 482–487. 

38. Tang G., Qin J., Dolnikowski G.G., Russell R.M. and Grusak M.A. (2009) Am. J. Clin. Nutr., 89, 1776–1783. 

39. Tang G., Hu Y., Yin S.A., Wang Y., Dallal G.E., Grusak M.A. and Russell R.M. (2012) Am. J. Clin. Nutr., 96, 658–664. 

40. Shumskaya M. and Wurtzel E.T. (2013) Plant Sci., 208, 58–63.
41. Moghissi A.A., Pei S. and Liu Y. (2015) Crit. Rev. Biotechnol., 21, 1–7.
42. Van Loo-Bouwman C.A., Naber T.H. and Schaafsma G. (2014) Br. J. Nutr., 111, 2153–2166,
43. Murray-Kolb L.E., Takaiwa F., Goto F., Yoshihara T., Theil E.C. and Beard J.L. (2002) J. Nutr., 132, 957–960. 

44. De Steur H., Blancquaert D., Gellynck X., Lambert W. and Van der Straeten D. (2012) Curr. Pharm. Biotechnol., 13, 2751–2760. 

45. Lucca P., Hurrel R. and Potrykus I. (2002) Theor. Appl. Genet., 102, 392–397. 

46. Moretti D, Biebinger R., Bruins M.J., Hoeft B. and Kraemer K. (2014) Ann. N. Y. Acad. Sci., 1312, 54–65. 

47. Gil-Humanes J., Pistón F., Barro F. and Rosell C.M. (2014) PLoS One, 9, e91931. 

48. Borrill P., Connorton J.M., Balk J., Miller A.J., Sanders D. and Uauy C. (2014) Front. Plant Sci., 5, 53. 

49. Hotz C. (2009) Food Nutr. Bull., 30 (Suppl. 1), S172–S178. 

50. Cakmak I., Kalayci M., Kaya Y., Torun A.A., Aydin N., Wang Y., Arisoy Z., Erdem H., Yazici A. and Gokmen O. (2010) J. Agric. Food Chem., 58, 9092–9102. 

51. Mugode L., Há B., Kaunda A., Sikombe T., Phiri S., Mutale R., Davis C., Tanumihardjo S. and de Moura F.F. (2014) J. Agric. Food Chem., 62, 6317–6325. 

52. Jeong J. and Guerinot M.L. (2008) Proc. Natl. Acad. Sci. USA, 105, 1777–1778.
53. Hans D. S., Joshua W., Dieter B., Dominique V.D. S. and Xavier (2016) Ann. N.Y. Acad. Sci., 1390,14-33.
54. Pramod L., Virendra C., Pratik S., Prasad, SK., Prabhat T. and Savita D. (2018) Journal of Pharmacognosy and Phytochemistry, SP1, 129-13.
55. John R.N., Taylor Kwaku, G. and Duodu (2017) Cereal Grains (2nd Edition), 317-351.
56. Gomathi M., Irene Vethamoni P. and Gopinath P. (2017) Chem Sci Rev Lett, 6(22), 1227-1237.