MICROSATELLITE MARKER ASSISTED SELECTION AND GENERATION OF F1 HYBRIDS FOR RICE BIOFORTIFICATION

BASANTI BRAR1*, DEEPIKA CHAUDHARY2, R.K. JAIN3, SUNITA JAIN4
1Department of Molecular Biology, Biotechnology and Bioinformatics, Chaudhary Charan Singh Haryana Agricultural University, Hisar, 125004, Haryana
2Chaudhary Devi Lal University, Sirsa, 125055, Haryana
3Department of Molecular Biology, Biotechnology and Bioinformatics, Chaudhary Charan Singh Haryana Agricultural University, Hisar, 125004, Haryana
4Department of Molecular Biology, Biotechnology and Bioinformatics, Chaudhary Charan Singh Haryana Agricultural University, Hisar, 125004, Haryana
* Corresponding Author : basantibrar@gmail.com

Received : 17-03-2018     Accepted : 20-03-2018     Published : 30-03-2018
Volume : 10     Issue : 6       Pages : 5427 - 5430
Int J Agr Sci 10.6 (2018):5427-5430

Keywords : Enhancement, mineral content Micronutrient deficiency, rice and zinc
Conflict of Interest : None declared
Acknowledgements/Funding : Author thankful to Chaudhary Charan Singh Haryana Agricultural University, Hisar, 125004, Haryana and Chaudhary Devi Lal University, Sirsa, 125055, Haryana
Author Contribution : All author equally contributed

Cite - MLA : BRAR, BASANTI, et al "MICROSATELLITE MARKER ASSISTED SELECTION AND GENERATION OF F1 HYBRIDS FOR RICE BIOFORTIFICATION ." International Journal of Agriculture Sciences 10.6 (2018):5427-5430.

Cite - APA : BRAR, BASANTI, CHAUDHARY, DEEPIKA, JAIN, R.K., JAIN, SUNITA (2018). MICROSATELLITE MARKER ASSISTED SELECTION AND GENERATION OF F1 HYBRIDS FOR RICE BIOFORTIFICATION . International Journal of Agriculture Sciences, 10 (6), 5427-5430.

Cite - Chicago : BRAR, BASANTI, DEEPIKA CHAUDHARY, R.K. JAIN, and SUNITA JAIN. "MICROSATELLITE MARKER ASSISTED SELECTION AND GENERATION OF F1 HYBRIDS FOR RICE BIOFORTIFICATION ." International Journal of Agriculture Sciences 10, no. 6 (2018):5427-5430.

Copyright : © 2018, BASANTI BRAR, et al, Published by Bioinfo Publications. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

Abstract

Biofortification is an approach for enhancement of the micronutrient content of staple crops. This possible because only due to the lots of genetic variation exist within the genome of staple food crops like rice. Greater than 2 billion persons of the humanity are micronutrient- iron as well as zinc deficient. Rice (Oryza sativa L.) is the major source of food for more than half of the world’s population. As a model cereal crop, the complete genome sequences of rice has become fundamental tool for study gene functions and correlate it with the practical applications in plants. At present, rice researchers devote much effort to generating mineral rich rice genotypes to combact the micronutrient malnutrition. Molecular analysis, genetic transformation and molecular breeding combine with mineral content examination for presented rice germplasm. In the present study we report the F1 identification of rice plant after crossing the high yielding genotypes with micronutrient (iron and Zinc) rich genotypes using microsatellite markers both by agarose as well as polyacrylamide gel electrophoresis.

References

1. Borlaug N.E. (1998) Food security, plant pathology and quarantine. Public discussion forum on global food Security. International Congress of Plant Pathol., Edinburgh.
2. Borlaug N.E. (2000) Plant Physiol., 124, 487-490.
3. Welch R.M., Graham R.D. (2004) J. Exp. Bot., 55, 353-364.
4. Zimmermann M.B. and Hurrell R.F. (2002) Current Opinion in Biotechnol., 13,142–145.
5. DeMaeyer E. and Adiels-Tegman M. (1985) World Health Stat. Quart., 38, 302-316.
6. Scrimshaw N.S. (1984) J. Nutr. Sci. Vitamino., 30, 47-63.
7. Parsad A.S. (1993) Clinical spectrum of human zinc deficiency In: Parsad AS Biochemistry of Zinc, Plenum Press, New York, pp 219-258.
8. Prasad A.S. (1996) J. Am. College of Nutr., 15, 113-120.
9. Rivera J.A., Ruel M.T., Santizo M.C., Lo Ènnerdal B. and Brown K.H. (1998) J. Nutr., 128,556-562
10. Goto F., Yoshihara T., Shigemoto N., Toki S. and Takaiwa F. (1999) Nat. Biotechnol., 17, 282-286.
11. Ye X., Al-Babili S., Kloeti A., Zhang J., Lucca P., Beyer P. and Potrykus I. (2000) Science, 287, 303–305.
12. Vasconcelos M., Datta K., Oliva N., Khalekuzzaman, Torrizo L., Krishnan S., Oliveira M., Goto F. and Datta S.K. (2002) Plant Sci., 164, 371-378.
13. Jain R.K., Saini N., Jain S. and Singh R. (2003) Ind. J. Biotechnol., 2, 121-137.
14. Guerinot M.L. (2007) Proc. Natl. Acad. Sci. USA, 104, 7311-7312.
15. Zhu C., Naqvi S., Gomez-Galera S., Pelacho A.M., Capell T. and Christou P. (2007) Trends Plant Sci., 12, 548-555.
16. Zheng L., Cheng Z., Ai C., Jiang X. and Bei X. (2010) Nicotianamine, a novel enhancer of rice iron bioavailability to humans. in press- available online.
17. Ishimaru Y., Kim S., Tsukamoto T., Oki H., Kobayashi T., Watanabe S., Matsuhashi S., Takahashi M., Nakanishi H., Mori S. and Nishizawa N.K. (2007) Proc. Natl. Acad. Sci. USA, 104, 7373-7378.
18. Masuda H., Suzuki M., Morikawa K.C., Kobayashi T., Nakanishi H., Takahashi M., Saigusa M., Mori S. and Nishizawa N.K. (2008) Rice, 1, 100–108.
19. Lee S., Jeong H.J., Kim S.A., Lee J., Guerinot M.L. and An G. (2010) Biomed. Life Sci.Plant Mol. Biol., 73, 507-517.
20. Wu K.S. and Tanksley S.D. (1993) Mol. Gen. Genet., 241, 225-235.
21. McCouch S.R. (2001) Plant Physiol., 125, 152-155.
22. Li Z. (2001) QTL mapping in rice, a few critical considerations. In, Rice genetics IV (EdsKhush, GS, Brar, DS and Hardy, B), IRRI, Los Baños, Manila, Philippines, pp 153-171.
23. Xu Y. (2002) Global view of QTL: rice as a model In: quantitative genetics, genomics and plant breeding (ed Kang, MS), Wallingford (UK): CAB International, pp 109-134.
24. Shen Y.J., Jiang H., Jin J.P., Zhang Z.B., Xi B., He Y.Y., Wang G., Wang C., Qian L., Li X., Yu Q.B., Liu H.J., Chen D.H., Gao J.H., Huang H., Shi T.L. and Yang Z.N. (2004) Plant Physiol., 135 , 1198-1205
25. Brar B., Jain R.K. and Jain S. (2015) Int J CurrSci., 2, 15, E 42-50.
26. Brar B., Jain S., Singh R. and Jain R.K. (2011) Indian J. Genet., 71(1), 67-73.
27. Brar B., Jain S. and Jain R.K. (2014) Indian J. Genet., 74(1), 81-85.
28. Saghai- Maroof M.A., Soliman K.M., Jorgensen R.A. and Allerd R.W. (1984) Proc. Natl. Acad. Sci. USA, 81, 8014-8019.
29. Chan M.T., Chang H.H., Ho S.L., Tong W.F. and Yu S.M. (1993) Plant Mol. Biol., 22, 491-506.
30. Nandakumar N., Singh A.K., Sharma R.K., Mohapatra .T, Prabhu K.V., Zaman F.U. (2004) Euphytica, 136, 257-264.
31. Hashemi S.H., Mirmohammadi-Maibody S.A.M., Nematzadeh G.A. and Arzani A. (2009) Afri. J. Biotechnol., 8(10), 2094-2101.
32. Brar B., Jain R.K. and Jain S. (2015) Rice Genomics and Genetics, 6(9), 1-9.
33. Graham R.D., Ascher J.S. and Hynes S.C. (1992) Plant Soil., 146, 241-250.
34. Graham R.D., Senadhira D., Beebe S., Iglesias C. and Monasterio I. (1999) Field Crops Res., 60, 57–80.
35. Gregorio G.B., Senadhira D., Htut H. and Graham R.D. (2000) Food Nutr. Bull., 21, 382-386.
36. Virk P. and Barry G. (2009) Biofortified rice-towards the combating micronutrient malnutrion deficiencies. DAPO Box 7777, Metro Manila, Philippines: International Rice Research Institute.