EVALUATION OF RICE GERMPLASM FOR HEAT TOLERANCE

M. MAAVIMANI1*, R. SARASWATHI2, D. SASSIKUMAR3
1Department Plant Breeding and Genetics, Tamil Nadu Agricultural University, Coimbatore, India
2Department of Paddy Breeding Station, Tamil Nadu Agricultural University, Coimbatore, India
3ICAR- Tamil Nadu Rice Research Institute, Aduthurai, Tamil Nadu 612101
* Corresponding Author : maavi.plantbreeder@gmail.com

Received : 13-09-2017     Accepted : 07-10-2017     Published : 12-10-2017
Volume : 9     Issue : 46       Pages : 4770 - 4774
Int J Agr Sci 9.46 (2017):4770-4774

Keywords : Rice, High temperature, Genetic divergence, Global warming, Climate change
Academic Editor : Vangaru S
Conflict of Interest : None declared
Acknowledgements/Funding : Maavimani M thankful to Tamil Nadu Rice Research Institute (TRRI), Aduthurai,Tamil Nadu Agriculture University (TNAU), Coimbatore, for providing facilities to do experiment and I thank Dr. D. Sassikumar for providing rice germplasm under International Rice Research Institute project “Cereal Systems Initiative for South Asia (CSISA). Maavimani M extends her special thanks to Dr. R. Saraswathi for providing guidance and support during her study period
Author Contribution : All author equally contributed

Cite - MLA : MAAVIMANI, M., et al "EVALUATION OF RICE GERMPLASM FOR HEAT TOLERANCE." International Journal of Agriculture Sciences 9.46 (2017):4770-4774.

Cite - APA : MAAVIMANI, M., SARASWATHI, R., SASSIKUMAR, D. (2017). EVALUATION OF RICE GERMPLASM FOR HEAT TOLERANCE. International Journal of Agriculture Sciences, 9 (46), 4770-4774.

Cite - Chicago : MAAVIMANI, M., R. SARASWATHI, and D. SASSIKUMAR. "EVALUATION OF RICE GERMPLASM FOR HEAT TOLERANCE." International Journal of Agriculture Sciences 9, no. 46 (2017):4770-4774.

Copyright : © 2017, M. MAAVIMANI, et al, Published by Bioinfo Publications. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

Abstract

An experiment was conducted by utilizing the existing 98 breeding materials derived from crosses involving heat tolerant donors as one of the parents. The aim of the study was to assess the degree of genetic diversity for yield and its related traits in order to identify high temperature tolerant lines that could be utilized in hybridization programme. The 98 genotypes were grouped into 13 diverse clusters. Cluster III with three genotypes viz., IR 86970 – 112 – 3, IR 86977 – 122 – 1 and IR 86991 – 103 – 2 involving three heat tolerant donors exhibited the maximum intra cluster distance of 162.33. The inter cluster distance was high between VI and XII (329.80), XIII and VI (265.50) and XII and V (263.45). Hybridization between the genotypes of these clusters and also between I and VI may offer scope for further selection. Total number of tillers per plant (44.03 %) and single plant yield (26.29 %) contributed more towards genetic divergence.

References

1. Gregory P.J., Ingram J.S. and Kobayashi T. (2000) Global Environ. Res., 2, 71-77
2. Bhuiyan N.I., Paul D.N.R. and Jabbar M.A. (2002) Feeding the extra million by 2025 Challenges for rice research and extension in Bangladesh. A keynote paper presented on National workshop on rice research and extension held on 29-31 January 2002 at BARI, Gazipur, 9.
3. Carriger S. and Vallee D. (2007) More crop per drop. Rice Today, 6: 10–13.
4. IPCC (Intergovernmental Panel on Climate Change). (2001) Third assessment report of IPCC, Cambridge University Press, United Kingdom New York.
5. Sheely J., Elmido A., Centeno G. and Pablico P. (2005) J. of Agric. Met., 60, 463-468.
6. Mohammed A.R. and Tarpley L. (2009) Agric. Meteorol., 149, 999-1008
7. Wassmann R. and Dobermann A. (2007) Nutrition and natural resources, 2, 4-14.
8. Vivekanandan P. and Subramanian S. (1993) Oryza, 30, 60-62.
9. Mahalanobis P.C. (1936) Proc. Natl. Inst. Sci. India, 2, 49-55.
10. Takashi M. (2005) Nature, 436, 793-800.
11. IPCC. (2007) Fourth assessment report of IPCC, Cambridge University Press, United Kingdom
12. Mirza M.M.Q. (2003) Climate policy, 3, 233-248.
13. Yoshida S., Satake T. and Mackill D.S. (1981) IRRI Research Paper Series, 67.
14. Prasad P.V.V., Boote K.J., Allen L.H., Sheehy J.E. and Thomas J.M.G. (2006) Field Crops Res., 95, 398–411.
15. Jagadish S.V.K., Craufurd P.Q. And Wheeler T.R. (2008) Crop Sci., 48,1140–1146.
16. Chandra B.S., Reddy T.D. and Ansari N.A. (2007a) Res. Crops, 8, 600-603.
17. Hegde S.G. and Patil C.S. (2000) Karnataka J. Agric. Sci., 13, 549-553.
18. Senapati B.K. and Sarkar G. (2005) Oryza, 42, 70-72.
19. Khatun M.T., Hanafi M.M., Yusop M.R., Wong M.Y., Salleh F.M. and Ferdous J. (2015)BioMed Res. Int, 290861, 7.
20. Sridhar T.C., Dushyantha kumar B.M., Mani B.R. and Nishanth G.K. (2016) Green Farming, 7, 20-24.
21. Imran M., Gangwar L.K. and Fatima R. (2017) Indian Res. J. Genet. & Biotech., 9(1), 129-138.
22. Kumar S., Chauhan M.P. and Kumar N. (2017) Int. J. Curr. Microbiol. App. Sci., 6(3), 1286-1292.