APPLICATION OF THE FERMENTED AND IMMOBILIZED Cannabis sativa PRODUCTS FOR THE BISCUITS PRODUCTION

V. KRUNGLEVICIUTE1, P. ZAVISTANAVICIUTE2, E. MOZURIENE3, D. BAGUCKAITE4, V. BAUZYTE5, D. BUDRECKIS6, I. KRIKSCIUNAS7, E. CIMBALARU8, M. DOMSKIS9, A. SANTINI10, E. BARTKIENE11*
1Lithuanian University of Health Sciences, Tilzes 18, LT-47181 Kaunas, Lithuania
2Lithuanian University of Health Sciences, Tilzes 18, LT-47181 Kaunas, Lithuania
3Lithuanian University of Health Sciences, Tilzes 18, LT-47181 Kaunas, Lithuania
4Lithuanian University of Health Sciences, Tilzes 18, LT-47181 Kaunas, Lithuania
5Lithuanian University of Health Sciences, Tilzes 18, LT-47181 Kaunas, Lithuania
6Lithuanian University of Health Sciences, Tilzes 18, LT-47181 Kaunas, Lithuania
7Lithuanian University of Health Sciences, Tilzes 18, LT-47181 Kaunas, Lithuania
8Lithuanian University of Health Sciences, Tilzes 18, LT-47181 Kaunas, Lithuania
9Lithuanian University of Health Sciences, Tilzes 18, LT-47181 Kaunas, Lithuania
10University of Naples Federico II hereinafter UNINA, Via D. Montesado 49, 80131 Napoli, Italy
11Lithuanian University of Health Sciences, Tilzes 18, LT-47181 Kaunas, Lithuania
* Corresponding Author : elena.bartkiene@lsmuni.lt

Received : 06-12-2016     Accepted : 18-03-2017     Published : 06-04-2017
Volume : 9     Issue : 16       Pages : 4110 - 4116
Int J Agr Sci 9.16 (2017):4110-4116

Keywords : Biscuits, Cannabis sativa products, Fermentation, Lactic acid bacteria
Conflict of Interest : None declared
Acknowledgements/Funding : The authors are thankful to Lithuanian University of Health Sciences for providing the financial support to carry out part of this research work (research contract No. V-31).
Author Contribution : . Krungleviciute: lactic acid bacteria isolation and characterisation of ; P. Zavistanaviciute: cells immobilisation; E. Mozuriene: fermented products parameters evaluation; D. Baguckaite, V. Bauzyte, D. Budreckis, I. Kriksciunas, E. Cimbalaru, M. Domskis

Cite - MLA : KRUNGLEVICIUTE, V., et al "APPLICATION OF THE FERMENTED AND IMMOBILIZED Cannabis sativa PRODUCTS FOR THE BISCUITS PRODUCTION." International Journal of Agriculture Sciences 9.16 (2017):4110-4116.

Cite - APA : KRUNGLEVICIUTE, V., ZAVISTANAVICIUTE, P., MOZURIENE, E., BAGUCKAITE, D., BAUZYTE, V., BUDRECKIS, D., KRIKSCIUNAS, I., CIMBALARU, E., DOMSKIS, M., SANTINI, A., BARTKIENE, E. (2017). APPLICATION OF THE FERMENTED AND IMMOBILIZED Cannabis sativa PRODUCTS FOR THE BISCUITS PRODUCTION. International Journal of Agriculture Sciences, 9 (16), 4110-4116.

Cite - Chicago : KRUNGLEVICIUTE, V., P. ZAVISTANAVICIUTE, E. MOZURIENE, D. BAGUCKAITE, V. BAUZYTE, D. BUDRECKIS, I. KRIKSCIUNAS, E. CIMBALARU, M. DOMSKIS, A. SANTINI, and E. BARTKIENE. "APPLICATION OF THE FERMENTED AND IMMOBILIZED Cannabis sativa PRODUCTS FOR THE BISCUITS PRODUCTION." International Journal of Agriculture Sciences 9, no. 16 (2017):4110-4116.

Copyright : © 2017, V. KRUNGLEVICIUTE, et al, Published by Bioinfo Publications. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

Abstract

The aim of this study was to increase the total phenolic compounds (TPC) content, antioxidant activity, and protein digestibility of Cannabis sativa protein and expeller by using fermentation with selected lactic acid bacteria (LAB) strains, isolated from spontaneous fermented cereal substrate, and to adapt the Cannabis sativa protein and expeller products by using immobilization for higher value biscuits production.Spontaneous sourdough is a good source for LAB isolation, and isolated strains (Lactobacillus plantarum and Lactobacillus paracasei) showed versatile carbohydrate metabolism and resistance to low pH conditions. L. plantarum and L. paracasei could be used for hemp seed protein and expeller fermentation in order to increase its antioxidant activity, and for hemp seed expeller protein digestibility increasing L. plantarum should be selected (digestibility increase 15.26%, compare to nonfermented expeller samples). Fermented hemp seed products have significant influence on most of the biscuits parameters, and for biscuits value increasing with L. plantarum fermented and immobilazed hemp seed protein and expeller could be recommended.

References

1. Borhade S.S. (2013) Archives of Applied Science Research, 5(1), 5-8
2. Bartkiene E, Juodeikiene G., Vidmantiene D., Zaborskiene G. and Kunkulberga D. (2009) Agriculture, 96(4), 181-196.
3. Bartkiene E., Jakobsone I., Pugajeva I., Bartkevics V., Zadeike D. and Juodeikiene G. (2016) LWT-Food Science and Technology, 65, 275-282.
4. Bartkiene E., Krungleviciute V., Juodeikiene G., Vidmantiene D. and Maknickiene Z. (2015) Journal of the Science of Food and Agriculture, 95(6), 1336-1342.
5. Starkute V., Bartkiene E., Bartkevics V., Rusko J., Zadeike D. and Juodeikiene G. (2016) Food Science and Technology, 53: 4141. DOI: 10.1007/s13197-016-2384-8.
6. Kiss H., Kögler B., Petricevic L., Sauerzapf I., Klayraung S., Domig K.J., Viernstein H. and Kneifel W. (2007) International Journal of Obstetrics and Gynaecology, 114, 1402-1407.
7. Versalovic J., Schneider M., De Bruijn F. and Lupski J.R. (1994) Methods in Molecular and Cellular Biology, 5, 25-40.
8. Di Cello F., Bevivino A., Chiarini L., Fani R., Paffetti D., Tabacchioni S. and Dalmastri C. (1997) Applied and Environmental Microbiology, 63, 4485-4493.
9. Song Y.-L., Kato N., Liu C.-X., Matsumiya Y., Kato H. and Watanabe K. (2000) FEMS Microbiology Letters, 187, 167-173.
10. Berthier F. and Ehrlich, S.D. (1998) FEMS Microbiology Letters, 161.1, 97-106.
11. Ventura M., Canchaya C., Meylan V., Klaenhammer T.R. and Zink R. (2003) Appl. Environ. Microbiol.November, 69(11), 6908-6922.
12. Lee J., Yun H.S., Cho K.W., Oh S., Kim S.H., Chun T. et al. (2011) International Journal of Food Microbiology, 148, 80-86.
13. Vaher M., Matso K., Levandi T., Helmja K. and Kaljurand M. (2010) Procedia Chemistry, 2, 76-82.
14. Zhu K.X., Lian C.X., Guo X.N., Peng W. and Zhou H.M. (2011) Food Chem, 126, 1122-1126.
15. Lqari H., Vioque J., Pedroche J. and Millan F. (2002) Food Chem, 76, 349-356.
16. Cotter P.D. and Hill C.(2003) Microbiol. Mol. Biol. Rev, 67, 3429-3453.
17. Alvarez-Sieiro P., Montalbán-López M., Mu D. and Kuipers O.P. (2016) Appl Microbiol Biotechnol, 100, 2939-2951.
18. Saeedi M., Shahidi F., Mortazavi S.A., Milani E. and Tabatabaei Y.F. (2015) Journal of Food Safety, 35(3), 287-294.
19. Wanapat M., Anantasook N., Rowlinson P., Pilajun R. and Gunun P. (2013) Asian-Aust. J. Anim. Sci, 26, 529-536.
20. Rathore S., Salmeron I. and Pandiella S.S. (2012) Food Microbiology, 30, 239-244.
21. Ng C. C., Wang C.Y., Wang Y.P., Tzeng W.S. and Shyu Y.T. (2011) Journal of Bioscience and Bioengineering, 111(3), 289-293.
22. Liukkonen K.H., Katina K., Wilhelmsson A., Myllymaki O., Lampi A.M., Kariluoto S., Piironen V., Heinonen S.M., Nurmi T., Adlercreutz H., Peltoketo A., Pihlava J.M., Hietaniemi V. and Poutanen K. (2003) Proc. Nutr. Soc, 62, 117-122.
23. Dordevic T.M., Siler-Marinkovic S.S. and Dimitrievic-Brankovic S.I. (2010) Food Chem, 119, 957-963.
24. Anson N.M., Selinheimo E., Havenaar R., Aura A.M., Mattila I., Lehtinen P., Bast A., Poutanen K. and Haenen G.R.M.M. (2009) J. Agric. Food Chem, 57, 6148-6155.
25. Rodríguez H., Curiel J.A., Landete J.M., de las Rivas B., de Felipe F.L. and GómezCordovés C. (2009) International Journal of Food Microbiology, 132(2-3), 79-90.