Optimization of DNA isolation and PCR protocol for RAPD analysis of banana / plantain (Musa spp.)

Das B.K.1*, Jena R. C.2*, Samal K.C.3*
1Depertment of Horticulture,OUAT,BBSR,Orissa
2Biotechnology cum Commercial Tissue Culture Centre, Orissa University of Agriculture and Technology, Bhubaneswar-751003, Orissa
3Department of biotechnology,OUAT,BBSR,Orissa
* Corresponding Author : samalkc@rediffmail.com

Received : -     Accepted : -     Published : 21-12-2009
Volume : 1     Issue : 2       Pages : 21 - 25
Int J Agr Sci 1.2 (2009):21-25
DOI : http://dx.doi.org/10.9735/0975-3710.1.2.21-25

Keywords : Banana, Musa, PCR, DNA isolation, RAPD
Conflict of Interest : None declared

Cite - MLA : Das B.K., et al "Optimization of DNA isolation and PCR protocol for RAPD analysis of banana / plantain (Musa spp.)." International Journal of Agriculture Sciences 1.2 (2009):21-25. http://dx.doi.org/10.9735/0975-3710.1.2.21-25

Cite - APA : Das B.K., Jena R. C., Samal K.C. (2009). Optimization of DNA isolation and PCR protocol for RAPD analysis of banana / plantain (Musa spp.). International Journal of Agriculture Sciences, 1 (2), 21-25. http://dx.doi.org/10.9735/0975-3710.1.2.21-25

Cite - Chicago : Das B.K., Jena R. C., and Samal K.C. "Optimization of DNA isolation and PCR protocol for RAPD analysis of banana / plantain (Musa spp.)." International Journal of Agriculture Sciences 1, no. 2 (2009):21-25. http://dx.doi.org/10.9735/0975-3710.1.2.21-25

Copyright : © 2009, Das B.K., et al, Published by Bioinfo Publications. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

Abstract

Genetic analysis of plants relies on high yields of pure DNA samples. Here we present the optimization of DNA isolation and Polymerase chain reaction (PCR) conditions for Random Amplified Polymorphic DNA (RAPD) analysis of banana/plantain. The leaf of banana contains high level of polysaccharides, poly phenols and secondary metabolites. The extracted DNA from these cultivars when subjected to PCR is often problematic, especially when mature tissues are used for DNA extraction. In order to overcome these problems a protocol has been developed, availing on a high salt concentration and on the combination of Polyvinyl pyrrolidone (PVP) and Cetyl trimethyl ammonium bromide (CTAB) in the extraction buffer, in order to prevent the solubilization of polysaccharides and polyphenols during the DNA extraction method. It also involves successive long term chloroform: Isoamylalcohol extractions, an long term RNAse treatment with all steps carried out at Room temperature (RT). Using this method, DNA was extracted from different banana species including young leaves, old leaves, frosted old leaves and withered old leaves. The yield of DNA ranged from 1-2 μg / μl per gram of the leaf sample / tissue and the purity ratio was between 1.6-1.7 indicating minimal levels of contaminating metabolites. The technique is ideal for isolation of DNA from different plant species / cultivars and the isolated DNA were used for RAPD analysis. The optimization of RAPD protocol was based on the use of 50 ng of template DNA, higher concentration of MgCl2 (3 mM) and lower concentration of primer (0.6μM), Taq DNA polymerase (1.5 units) and an annealing temperature of 35ºC, which resulted, optimal amplification. In all PCR reactions Reproducible amplifiable products were observed. Thus the results indicate that the optimized protocol for DNA isolation and PCR was applicable to plant species belonging to different genera and this process is suitable for further work on diversity analysis. Furthermore, here we used suitable DNA isolation protocol for RAPD analysis to study the genetic variation in the future in Musaceae species grown in Orissa.

References

[1] Singh H.P. (2007) Indian Horticulture, 56(6), 3-8.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[2] Pikkart M.J. and Villeponteau B. (1993) Biotechniques, 14, 24-25.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[3] Padmalatha K. and Prasad M.N.V. (2006) African journal of Biotechnology, 5 (3), 230-234.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[4] Sharma A.D., Gill, P.K., and Singh P. (2002) Mol Bio Rep, 20, 415a-415f  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[5] Michiels A., Van den Ende W., Tucker M., Van Riet L. and Van Laere A. (2003) Anal. Biochemistry,315(1),85-89  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[6] Wang Y. and Taylor D.E. (1993) Biotechniques, 14, 748-750.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[7] Ziegenhagen B. and Scholz F. (1998) Molecular Tools for screening Biodiversity 2.2 Plants and Animals, Chapman and Hall, London.pp.32-35  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[8] Saghai-Maroof M.A., Soliman K.M., Jorgensen., R.A. and Allard R.W. (1984) Proc. Natl. Acad. Sci. USA, 81(24), 8014-8019.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[9] Doyle J. J. and Doyle J. L. (1987) phytochem. Bull, 19, 11-15  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[10] Fang G., Hammar S. and Grumet R. (1992) Bio feedback, 13, 52-54.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[11] Moller E. M., Bahnweg G., Sandermann H. and Geiger H. H. (1992) Nucl Acids Res, 22, 6115-6116  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[12] Zhang J. and McSteward J.D. (2000) Journal of cotton Science, 4, 193-201  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[13] Dabo S.M., Mitchell E.D. and Melcher U. (1993) Analytical Biochemistry 210, 34-38.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[14] Sambrook j., Fritsch E.F. and Maniatis T. (1989) Cold spring Harbor Laboratory Press, Cold Spring, Harbour, New York, USA.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[15] International Plant Genetic Resources Institute (IPGRI), (1999) http://198.93.227.125/descript/banweb e.pdf.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[16] Kotchoni S. O., Gachomo E. W., Betiku E. and Shonukan O. O. (2003) Afr. J. Biotechnol, 2, 88-90.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[17] Dellaporta S.L., wood J. and Hicks J.B. (1983) Plant Mol Biol Rep, 1, 19-21  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[18] Katterman F. R. H. and V I Shattuck V. I. (1983) Prep. Biochem, 13, 347-359  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[19] Peterson D.G., Boehm K.S. and Stack S.M. (1997) Plant Mol. Biol. Rep, 15, 148-153  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[20] Porebski S., Baily L.G. and Baum B.R. (1997) Plant Mol Bio Rep, 15, 8-15  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[21] Loomis is W.D. (1974) Meth Enzymol, 31, 528-544  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[22] Li Y.F., Li X.Y., Lin J., Xu Y., Yan L., Tang F. and Chen F. (2003) Planta med, 69, 186-188  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus