THE ASSOCIATION BETWEEN TMPRSS2 GENETIC POLYMORPHISMS AND THE SUSCEPTIBILITY AND SEVERITY OF COVID-19: A SYSTEMATIC REVIEW

C.S. SILVA1*, M.J.A. SILVA2, K.V.B. LIMA3, C.C. FROTA4, D.M. SARDINHA5, L.N.G.C. LIMA6
1Postgraduate Program in Parasitic Biology in the Amazon (PPGBPA), University of State of Para (UEPA), Brazil; Bacteriology and Mycology Section of the Evandro Chagas Institute (IEC), Ananindeua, Para, Brazil
2Program in Epidemiology and Health Surveillance (PPGEVS) of the Evandro Chagas Institute (IEC), Ananindeua, Para, Brazil; Bacteriology and Mycology Section of the Evandro Chagas Institute (IEC), Ananindeua, Para, Brazil
3Postgraduate Program in Parasitic Biology in the Amazon (PPGBPA), University of State of Para (UEPA), Brazil; Program in Epidemiology and Health Surveillance (PPGEVS) of the Evandro Chagas Institute (IEC), Ananindeua, Para, Brazil
4Department of Pathology and Legal Medicine, Faculty of Medicine, Federal University of Ceara, Fortaleza, CE, Brazil
5Postgraduate Program in Parasitic Biology in the Amazon (PPGBPA), University of State of Para (UEPA), Brazil; Bacteriology and Mycology Section of the Evandro Chagas Institute (IEC), Ananindeua, Para, Brazil
6Postgraduate Program in Parasitic Biology in the Amazon (PPGBPA), University of State of Para (UEPA), Brazil; Program in Epidemiology and Health Surveillance (PPGEVS) of the Evandro Chagas Institute (IEC), Ananindeua, Para, Brazil
* Corresponding Author : karolinysoares2303@gmail.com

Received : 01-10-2022     Accepted : 27-10-2022     Published : 30-10-2022
Volume : 14     Issue : 4       Pages : 850 - 855
Genetics 14.4 (2022):850-855

Keywords : COVID-19, SARS-CoV-2¸ Polymorphism, TMPRSS2, Expression
Academic Editor : I S Chakrapani, Prof Dr Suleyman Cylek
Conflict of Interest : None declared
Acknowledgements/Funding : Authors are thankful to Postgraduate Program in Parasitic Biology in the Amazon (PPGBPA), University of State of Para (UEPA), Brazil
Author Contribution : CSS was responsible for the conceptualization, formal analysis, data curation, methodology, investigation, validation, visualization, roles/writing – original draft, editing. MJAS and DMS were responsible for the supervision, visualization, writing review

Cite - MLA : SILVA, C.S., et al "THE ASSOCIATION BETWEEN TMPRSS2 GENETIC POLYMORPHISMS AND THE SUSCEPTIBILITY AND SEVERITY OF COVID-19: A SYSTEMATIC REVIEW ." International Journal of Genetics 14.4 (2022):850-855.

Cite - APA : SILVA, C.S., SILVA, M.J.A., LIMA, K.V.B., FROTA, C.C., SARDINHA, D.M., LIMA, L.N.G.C. (2022). THE ASSOCIATION BETWEEN TMPRSS2 GENETIC POLYMORPHISMS AND THE SUSCEPTIBILITY AND SEVERITY OF COVID-19: A SYSTEMATIC REVIEW . International Journal of Genetics, 14 (4), 850-855.

Cite - Chicago : SILVA, C.S., M.J.A. SILVA, K.V.B. LIMA, C.C. FROTA, D.M. SARDINHA, and L.N.G.C. LIMA. "THE ASSOCIATION BETWEEN TMPRSS2 GENETIC POLYMORPHISMS AND THE SUSCEPTIBILITY AND SEVERITY OF COVID-19: A SYSTEMATIC REVIEW ." International Journal of Genetics 14, no. 4 (2022):850-855.

Copyright : © 2022, C.S. SILVA, et al, Published by Bioinfo Publications. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

Abstract

COVID-19, caused by the SARS-CoV-2 virus, is a highly transmissible disease that has a variety of symptoms. The presence of genetic polymorphisms in genes as ACE-2 and TMPRSS2 is directly associated with the susceptibility and severity of COVID-19. The objective of this work is to analyze which polymorphisms in the TMPRSS2 gene are associated with the progression of COVID-19. We identified 35 SNPs associated with disease progression. The high expression of TMPRSS2 in the lungs was associated with the presence of polymorphisms such as rs383510, rs469390 and rs464397. rs12329760 was the polymorphism most studied, where the presence of the T allele was related to protection against COVID-19. The SNPs found play an important role in determining the prognosis of the disease

References

1. De Vito A., Fiore V., Princic E., Geremia N., Panu Napodano C.M., Muredda A.A., Maida I., Madeddu G., Babudieri S. (2021) PLoS One, 16(3), 1-14.
2. Guo Y.R., Cao Q.D., Hong Z.S., Tan Y.Y., Chen S.D., Jin H.J., Tan K.S., Wang D.Y., & Yan Y. (2020) Military Medical Research, 7(1), 1-10.
3. Li J., Wang Y., Liu, Y., et al. (2022) European Journal of Medical Research, 27(1), 1-10.
4. Dieter C., Brondani L.A., Leitão C.B., Gerchman F., Lemos N.E., Crispim D. (2022) Plos One, 17(7), 1-23.
5. Lim S., Bae J.H., Kwon H.S. et al. (2021) Nature Reviews Endocrinology, 17, 11-30.
6. Dhama K., Khan S., Tiwari R., Sircar S., Bhat S., Malik Y.S., Singh K.P., Chaicumpa W., Bonilla-Aldana D.K., & Rodriguez-Morales A.J. (2020) Clin Microbiol Rev, 33(4), 20-28.
7. Astuti I. & Ysrafil. (2020) Clinical Research and Reviews, 14(4), 407-412.
8. Rahman S., Shishir M. A., Hosen M. I., Khan M. J., Arefin A., & Khandaker A. M. (2022) Gene Reports, 27, 1-10.
9. Glotov O. S., Chernov A. N., Scherbak S. G., & Baranov V. S. (2021) Russian Journal of Genetics, 57 (8), 878-892.
10. Zhu N., Zhang D., Wang W., Li X., Yang B., Song J., Zhao X., Huang B., Shi W., Lu R., Niu P., Zhan F., Ma X., Wang D., Xu W., Wu G., Gao G.F., Tan W. (2020) New England Journal of Medicine, 382(8), 727-733.
11. Fang L., Karakiulakis G., Roth M. (2020) Lancet Respir Med., [12] M., Kleine-Weber H., Schroeder S., Krüger N., Herrler T., Erichsen S., Schiergens T.S., Herrler G., Wu N.H., Nitsche A., Müller M.A., Drosten C., & Pöhlmann S. (2020) Cell, 181(2), 271-280.
13. Lima L.N.G.C., Sousa M.S., Lima K.V.B. (2020) J. Health Biol. Sci, 8, 1.
14. Zarubin A., Stepanov V., Markov A., Kolesnikov N., Marusin A., Khitrinskaya I., Swarovskaya M., Litvinov S., Ekomasova N., Dzhaubermezov M., Maksimova N., Sukhomyasova A., Shtygasheva O., Khusnutdinova E., Radzhabov M., Kharkov V. (2021) Genes, 12 (1), 1-16.
15. Lam D.K., Dang D., Flynn A.N., Hardt M., Schmidt B.L. (2015) Pain, 156(5), 923-930.
16. Thunders M. & Delahunt B. (2020) Journal of Clinical Pathology, 73(12), 773-776.
17. Mollica V., Rizzo A., Massari F. (2020) Future Oncology, 16(27), 2029-2033
18. Di Maria E., Latini A., Borgiani P., & Novelli G. (2020) Human Genomics, 14(1), 1-14.
19. Ramos-Lopez O., Daimiel L., Ramírez de Molina A., Martínez-Urbistondo D., Vargas J.A., Martínez J.A. (2020) International Journal of Genomics, 1-8.
20. Debnath M., Banerjee M., & Berk M. (2020) FASEB Journal, 34(7), 8787-8795.
21. Teng S. & Tang Q. (2020) Computational and Structural Biotechnology Journal, 18, 2100-2106.
22. Darbani B. (2020) International Journal of Environmental Research and Public Health, 17(10), 3433.
23. Torre-Fuentes L., Matías-Guiu J., Hernández-Lorenzo L., Montero-Escribano, P., Pytel, V., Porta-Etessam, J., Gómez-Pinedo, U., & Matías-Guiu, J. A. (2021) Journal of Medical Virology, 93(2), 863-869.
24. Asselta R., Paraboschi E.M., Mantovani A. & Duga S. (2020) Aging, 12(11), 10087-10098.
25. Kim Y.C., & Jeong B.H. (2021) Genes, 12(1), 1-9.
26. Latini A., Agolini E., Novelli A., Borgiani P., Giannini R., Gravina P., Smarrazzo A., Dauri M., Andreoni M., Rogliani P., Bernardini S., Helmer-Citterich M., Biancolella M., Novelli G. (2020) Genes, 11(9), 1-8.
27. Irham L.M., Chou W.H., Calkins M.J., Adikusuma W., Hsieh S.L., Chang W.C. (2020) Biochemical and Biophysical Research Communications, 529(2), 263-269.
28. Piva F., Sabanovic B., Cecati M., Giulietti M. (2021) Eur J Clin Microbiol Infect Dis., 40(2), 451-455.
29. Jeon S., Blazyte A., Yoon C., Ryu H., Jeon Y., Bhak Y., Bolser D., Manica A., Shin E.S., Cho Y.S., Kim B.C., Ryoo N., Choi H. & Bhak J. (2021) Molecules and Cells, 44(9), 680-687.
30. Wulandari L., Hamidah B., Pakpahan C., Damayanti N.S., Kurniati N.D., Adiatmaja C.O., Wigianita M.R., Soedarsono, Husada D., Tinduh D., Prakoeswa C., Endaryanto A., Puspaningsih N., Mori Y., Lusida M.I., Shimizu K., & Oceandy D. (2020) Human Genomics, 15 (1), 1-9.
31. Monticelli M., Hay Mele B., Benetti E., Fallerini C., Baldassarri M., Furini S., Frullanti E., Mari F., Andreotti G., Cubellis M.V., Renieri A. (2021) Genes, 12(4), 1-15.
32. Senapati S., Kumar S., Singh A.K., Banerjee P., & Bhagavatula S. (2020) Journal of Genetics, 99(1), 1-5.
33. Saih A., Bouqdayr M., Baba H., Hamdi S., Moussamih S., Bennani H., Saile R., Wakrim L., & Kettani A. (2021) Biomed Res Int, 9982729, 1-17.
34. Vargas-Alarcón G., Posadas-Sánchez R., & Ramírez-Bello J. (2020) Life Sci., 260 (118313), 1-13.
35. Paniri A., Hosseini M.M., & Akhavan-Niaki H. (2020) Journal of Biomolecular Structure and Dynamics, 1-18.
36. Schönfelder K., Breuckmann, K., Elsner C., Dittmer U., Fistera D., Herbstreit F., Risse J., Schmidt K., Sutharsan S., Taube C., Jöckel K.H., Siffert W., Kribben A., & Möhlendick B. (2021) Frontiers in Genetics, 12, 667231.
37. Monticelli M., Mele B.H., Andreotti G., Cubellis M.V., & Riccio G. (2021) European Journal of Medical Genetics, 64 (6), 104227.
38. Pandey R.K., Srivastava A., Singh P.P., & Chaubey G. (2022) Infection, Genetics and Evolution, 98, 105206.
39. Rokni M., Heidari Nia M., Sarhadi M., Mirinejad S., Sargazi S., Moudi M., Saravani R., Rahdar S., & Kargar M. (2022) Applied Biochemistry and Biotechnology, 194(8), 3507-3526
40. Minashkin M.M., Grigortsevich N.Y., Kamaeva A.S., Barzanova V.V., Traspov A.A., Godkov M.A., Ageev F.A., Petrikov S.S., & Pozdnyakova N.V. (2022) Biomedicines, 10 (3), 549.
41. Smatti M.K., Al-Sarraj Y.A., Albagha O., & Yassine H.M. (2020) Frontiers in Genetics, 11, 578523.
42. Andolfo I., Russo R., Lasorsa V.A., Cantalupo S., Rosato B.E., Bonfiglio F., Frisso G., Abete P., Cassese G.M., Servillo G., Esposito G., Gentile I., Piscopo C., Villani R., Fiorentino G., Cerino P., Buonerba C., Pierri B., Zollo M., Iolascon A. (2021) Science, 2021; 24 (4), 102322.
43. Villapalos-García G., Zubiaur P., Rivas-Durán R., Campos-Norte P., Arévalo-Román C., Fernández-Rico M., García-Fraile Fraile L., Fernández-Campos P., Soria-Chacartegui P., Fernández de Córdoba-Oñate S., Delgado-Wicke P., Fernández-Ruiz E., González-Álvaro I., Sanz J., Abad-Santos F. & de Los Santos I. (2022) Life Science Alliance, 5 (10)
44. Huang C., Wang Y., Li X., Ren L., Zhao J., Hu Y., Zhang L., Fan G., Xu J., Gu X., Cheng Z., Yu T., Xia J., Wei Y., Wu W., Xie X., Yin W., Li H., Liu M., Xiao, Y. (2020) The Lancet, 395 (10223), 497-506.
45. Ovsyannikova I.G., Haralambieva I.H., Crooke S.N., Poland G.A., & Kennedy R.B. (2020) Immunological Reviews, 296(1), 205-219.
46. Senapati S., Banerjee P., Bhagavatula S., Kushwaha P.P., & Kumar S. (2021) Journal of Genetics, 100(1), 12.
47. Beyerstedt S., Casaro E. B., & Rangel É. B. (2021) European journal of clinical microbiology & infectious diseases, official publication of the European Society of Clinical Microbiology, 40(5), 905-919.
48. Cheng Z., Zhou J., To K.K., Chu H., Li C., Wang D., Yang D., Zheng S., Hao K., Bossé Y., Obeidat M., Brandsma C.A., Song Y.Q., Chen Y., Zheng B.J., Li L., & Yuen K.Y. (2015) Journal of Infectious Diseases, 212 (8), 1214-1221.
49. Bizzotto J., Sanchis P., Abbate M., Lage-Vickers S., Lavignolle R., Toro A., Olszevicki S., Sabater A., Cascardo F., Vazquez E., Cotignola J., & Gueron G. (2020) Science, 23(10), 101585.