BIOLOGY AND CHEMISTRY OF RHIZOSPHERE: THEIR ROLE IN NUTRIENT MOBILISATION

R.K. MEENA1*, B.L. MEENA2, M.A. KHAN3, Y.K. SHARMA4, M.L. MEENA5, K.C. VERMA6
1Department of Soil Science, College of Agriculture, Lalsot, 303503, Sri Karan Narendra Agriculture University, Jobner, 303329, Rajasthan, India
2Department of Soil Science, College of Agriculture, Lalsot, 303503, Sri Karan Narendra Agriculture University, Jobner, 303329, Rajasthan, India
3Department of Plant Pathology, College of Agriculture, Fatehpur-Shekhawati, 332301, Sri Karan Narendra Agriculture University, Jobner, 303329, Rajasthan, India
4Department of Soil Science, College of Agriculture, Lalsot, 303503, Sri Karan Narendra Agriculture University, Jobner, 303329, Rajasthan, India
5Department of Soil Science, College of Agriculture, Lalsot, 303503, Sri Karan Narendra Agriculture University, Jobner, 303329, Rajasthan, India
6Department of Agronomy, Agricultural Research Station, Fatehpur-Shekhawati, 332301, Sri Karan Narendra Agriculture University, Jobner, 303329, Rajasthan, India
* Corresponding Author : ravi1931989@gmail.com

Received : 01-07-2020     Accepted : 23-07-2020     Published : 30-07-2020
Volume : 12     Issue : 7       Pages : 1884 - 1889
Int J Microbiol Res 12.7 (2020):1884-1889

Keywords : Rhizosphere, Mobilisation, Soil Matrix, Root Exudation, Phytosiderophores, Rhizosphere eco-system
Academic Editor : Marcos Antonio Pesquero, Jose Neethu, Janmajoy Banerjee, Tarek Mohamed Abdel Ghany
Conflict of Interest : None declared
Acknowledgements/Funding : Authors are thankful to College of Agriculture, Lalsot, 303503, Sri Karan Narendra Agriculture University, Jobner, 303329, Rajasthan, India
Author Contribution : All authors equally contributed

Cite - MLA : MEENA, R.K., et al "BIOLOGY AND CHEMISTRY OF RHIZOSPHERE: THEIR ROLE IN NUTRIENT MOBILISATION." International Journal of Microbiology Research 12.7 (2020):1884-1889.

Cite - APA : MEENA, R.K., MEENA, B.L., KHAN, M.A., SHARMA, Y.K., MEENA, M.L., VERMA, K.C. (2020). BIOLOGY AND CHEMISTRY OF RHIZOSPHERE: THEIR ROLE IN NUTRIENT MOBILISATION. International Journal of Microbiology Research, 12 (7), 1884-1889.

Cite - Chicago : MEENA, R.K., B.L. MEENA, M.A. KHAN, Y.K. SHARMA, M.L. MEENA, and K.C. VERMA. "BIOLOGY AND CHEMISTRY OF RHIZOSPHERE: THEIR ROLE IN NUTRIENT MOBILISATION." International Journal of Microbiology Research 12, no. 7 (2020):1884-1889.

Copyright : © 2020, R.K. MEENA, et al, Published by Bioinfo Publications. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

Abstract

Rhizosphere is a region of soil in the vicinity of plant roots in which the chemistry and microbiology is influenced by their growth, respiration, and nutrient exchange. It is, therefore, an extremely important and active area in regulating nutrient bioavailability, plant communities, adaptation processes, and the growth environment. The chemical and biological processes occurring in the rhizosphere not only determine mobilization, acquisition of soil nutrients and microbial dynamics, but also control nutrient use efficiency by crops, and thus profoundly influence crop productivity and sustainability .The availability of nutrients in the rhizosphere is controlled by the integrated effects of soil properties, plant characteristics, and the interactions between plant roots and microorganisms .In the rhizosphere ecosystem, plants, via root exudation and release of specific signalling compounds, effect the composition and structure of the rhizosphere microbial community So, rhizosphere management strategies emphasize maximizing the efficiency of root and rhizosphere processes in nutrient acquisition and use by crops rather than solely depending on excessive application of chemical fertilizers. The strategies mainly include manipulating root system, rhizosphere acidification, carboxylate exudation, microbial associations with plants, rhizosphere interactions in terms of intercropping and rotation, localized application of nutrients, use of efficient crop genotypes, and synchronizing rhizosphere nutrient supply with crop demands. From study it has been observed that Probacteria and Bacteriodates are the most abundant bacterial community in maize rhizosphere. In recent study it has been shown that gross N mineralisation rate is higher in rhizosphere than bulk soil. It is also clear that Fe and Zn availability also increases by localized ammonium-N application .it has also been observed that rhizosphere priming can promote mobilisation of N-rich compounds from soil organic matter. Moreover, rhizosphere influences on soil solution composition and mineral stability. Still future research work is needed to identify the un-known organic compounds and their specific roles in nutrient mobilization in the rhizosphere. Knowledge on microbial population, their roles, dynamics in nutrient mobilisation for specific crop and soil needs further extension.

References

1. Zhang L., Xu M., Liu Y., Zhang F., Hodge A., & Feng G. (2016) New Phytologist, 210(3), 1022-1032.
2. Abd El-Ghany T.M. & Masmali I.A. (2016) J Plant Pathol Microbiol, 7(349), 2.
3. Hiltner L. (1904) Arbeit. Deut. Landw. Ges. Berlin, 98, 59-78.
4. Marschner H., Romheld V., Horst W.J. and Martin P. (1995) Z. Pflanzenern. Bodenk. 149, 441-456.
5. Brimecombe M.J., Leij F.A.D. and Lynch J.M. (2007) New York, Marcel Dekker, 95-140.
6. Scherer H. W. and Ahrens G. (2006) European Journal of Agronomy 5, 1-7.
7. Crowley D.E., & Rengel Z. (1999) Food Products Press, London, 1-40.
8. Bertin C., Yang X. and Weston L.A. (2003) 256, 67-83.
9. Jones D.L. and Darrah P.R. (1994) Plant and Soil 163, 1-12.
10. Marschner H. and Romheld V. (1988) Zeitschrift Fur Pflanzenphysiologie 111, 241-251.
11. Bottner P., Sallih Z. and Billes G. (1988) Biol Fert Soils, 7, 71-78.
12. Neumann G., and V. Romheld. (2000) 41-93. New York, Marcel Dekker.
13. Cheng H. H. (1995) Boca Raton, FL, CRC Press. 132-141.
14. Yang, X., W. Wang, Z. Ye, Z. He, and V. C. Baligar. (2004) Dordrecht, Netherlands, Kluwer Academic Publishers, 171-218.
15. Jarvis, S. C., and D. J. Hatch. (1985) Annals of Botany 55, 41-51.
16. Azura M., Gómez-Brandón M., Lazcano C., Bååth E. & Domínguez J. (2011) Soil Biology and Biochemistry, 42(12), 2276-2281.
17. Hinsinger P. (2001) Boca Raton, FL, CRC Press25-41.
18. Sene M., Dore T. and Gallet C. (2001) Agronomy Journal 93, 49-54.
19. Jianguo H. and Shuman L. M. (1991) Soil Science 152, 360-364.
20. Sarkar A. N. and Wyn Jones R. G. (1982) Plant and Soil 66, 361-372.
21. Li X., Rui J., Mao Y., Yannarell A., & Mackie R. (2014) Soil Biology and Biochemistry, 68, 392-401.
22. Reid J. B. and Gross M. J. (1980) Journal of Science and Food Agriculture, 31, 325-328.
23. Scherer H. W. and Ahrens G. (1996) European Journal of Agronomy, 5, 1-7.
24. Schmalenberger A., Hodge S., Bryant A., Hawkesford M. J., Singh B. K., Kertesz M. A. (2008) Environ. Microbiol 10.
25. Reisenauer H. M. (1994) Boca Raton, FL, Lewis Publishers. Rice, E. L. 1974, 147-164.
26. Fannings D.S., Keramidas V.Z. and El-Desoky M.A. (1989) WI, Soil Science Society of America.
27. Nommik H. and Vathras K. (1982) Plant and Soil 61, 7-26.
28. Gupta D.K., Chatterjee S., Datta S., Veer V. & Walther C. (2014) Chemosphere, 108, 134-144.
29. Edwards G. E., Ku S. B. and Foster J. G. (1983) St. Paul, MN, American Phytopathology Society, 105-119.
30. Romheld, V., and H. Marschner. (1983) Plant Physiology 71, 949-954.
31. Marschner H., Romheld V., Horst W. J. and Martin P. (1986) Z. Pflanzenern. Bodenk., 149, 441-456.
32. Murphy C. J., Baggs E. M., Morley N., Wall D. P., & Paterson E. (2015) Soil Biology and Biochemistry, 81, 236-243.
33. Takagi S., Kamei S. and Yu M. H. (1988) Journal of Plant Nutrition, 11, 643-651.
34. Miettinen K., Dong L., Navrot N., Schneider T., Burlat V., Pollier J., ... &Verpoorte R. (2014) Nature communications, 5(1), 1-12.
35. Zhuchi B., Gutknecht J. L., Herman D. J., Keck D. C., Firestone M. K., & Cheng W. (2014) Soil Biology and Biochemistry, 76, 183-192.
36. Hinsinger P., Elsass F., Jaillard B. and Robert M. (1993) Journal of Soil Science, 44, 535-545.
37. Sparks D. L. (1987) Advances in Soil Science, 6, 1-63.
38. Hinsinger P., Plassard C., Tang C. and Jaillard B. (2001) Plant and Soil, 248, 43-59.
39. Schott S., Valdebenito B., Bustos D., Gomez-Porras J. L., Sharma T., Dreyer I. (2016) Front. Plant Sci., 7,912.
40. Kloepper, J. W., Schippers B. and Bakker P. A. H. M. (1992) Phytopathology, 82, 726-727.
41. Zhu Q., Riley W. J., Tang J., Koven C. D. (2016) Biogeosciences 13 341-363.
42. Cesco S., Neumann G., Tomasi N., Pinton R., Weisskopf L. (2010) Plant Soil, 329 1-25.
43. Kuzyakov Y., Xu X. L. (2013) New Phytol., 198 656-669.
44. Bienfait H. F., Bino R. J., van der Bliek A. M., Duivenvoorden J. F. and Fontaine J. M. (1983) Physiologia Plantarum 59, 196-202.
45. Dijkstra, A. F., Govaert J. M., Scholton G. H. N. and van Elsas J. D. (1987) Soil Biology and Biochemistry, 19, 351-352.
46. Reganold J. P., Wachter J. M. (2016) Nat. Plants, 2,15221.
47. Mengel K., Kirkby E. A., Kosegarten H. and Appel T. (2001) 5th edition. Dordrecht, Nether-lands, Kluwer Academic Publishers.
48. White J. F., Chen Q., Torres M. S., Mattera R., Irizarry I., Tadych M., et al. (2015) AoB Plants, 7.
49. Riley D. and Barber S. A. (1971) Soil Science Society of America Proceedings, 35, 301- 306.
50. Lagunas B., Schäfer P., Gifford M. L. (2015) J. Exp. Bot., 45, 66-68.