ANTIMICROBIAL ACTIVITY OF GARLIC (Allium sativum) AND ITS POTENTIAL USE IN FISH PRESERVATION AND DISEASE PREVENTION

S. MUKHERJEE1, S. NATH2, S. CHOWDHURY3*, P. CHATTERJEE4
1Department of Biotechnology, Maulana Abul Kalam Azad University of Technology, Kolkata, 741249, West Bengal, India
2Department of Fish Processing Technology, Faculty of Fishery Sciences, West Bengal University of Animal and Fishery Sciences, Kolkata, 700037, West Bengal, India
3Department of Fish Processing Technology, Faculty of Fishery Sciences, West Bengal University of Animal and Fishery Sciences, Kolkata, 700037, West Bengal, India
4Department of Biotechnology, Maulana Abul Kalam Azad University of Technology, Kolkata, 741249, West Bengal, India
* Corresponding Author : supratim79@rediffmail.com

Received : 01-07-2020     Accepted : 23-07-2020     Published : 30-07-2020
Volume : 12     Issue : 7       Pages : 1879 - 1883
Int J Microbiol Res 12.7 (2020):1879-1883

Keywords : Antimicrobial activity, Garlic, Allium sativum, Allicin, Fish, Microbiological spoilage in fish, Fish preservation with garlic, Fish disease and prevention
Academic Editor : Jose Neethu
Conflict of Interest : None declared
Acknowledgements/Funding : Authors are thankful to Department of Biotechnology, Maulana Abul Kalam Azad University of Technology, Kolkata, 741249, West Bengal, India. Authors are also thankful to Department of Fish Processing Technology, Faculty of Fishery Sciences, West Bengal University of Animal and Fishery Sciences, Kolkata, 700037, West Bengal, India
Author Contribution : All authors equally contributed

Cite - MLA : MUKHERJEE, S., et al "ANTIMICROBIAL ACTIVITY OF GARLIC (Allium sativum) AND ITS POTENTIAL USE IN FISH PRESERVATION AND DISEASE PREVENTION." International Journal of Microbiology Research 12.7 (2020):1879-1883.

Cite - APA : MUKHERJEE, S., NATH, S., CHOWDHURY, S., CHATTERJEE, P. (2020). ANTIMICROBIAL ACTIVITY OF GARLIC (Allium sativum) AND ITS POTENTIAL USE IN FISH PRESERVATION AND DISEASE PREVENTION. International Journal of Microbiology Research, 12 (7), 1879-1883.

Cite - Chicago : MUKHERJEE, S., S. NATH, S. CHOWDHURY, and P. CHATTERJEE. "ANTIMICROBIAL ACTIVITY OF GARLIC (Allium sativum) AND ITS POTENTIAL USE IN FISH PRESERVATION AND DISEASE PREVENTION." International Journal of Microbiology Research 12, no. 7 (2020):1879-1883.

Copyright : © 2020, S. MUKHERJEE, et al, Published by Bioinfo Publications. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

Abstract

The high-water content in fish makes prone to microbial-spoilage by growth and proliferation of food-spoilage bacteria, thus crosses the limit of acceptability for safe human consumption. Consumers, now-a-days, demand natural but effective preservation of food free of potential health risk. So, to satisfy the consumers’ preference of minimally-processed, fresh-alike, tasteful, nutritious and economic food free from antibiotic and/or harmful chemical preservative with longer shelf-life and necessary safety standards, traditional means of controlling microbial spoilage and safety hazards in foods are being replaced by the use of biological, natural and organic antimicrobial compounds derived from plants and other natural table spices, such as garlic, either alone or in combination with mild physicochemical treatments and low concentrations of traditional chemical preservatives. The use of such antimicrobial compounds inhibits the growth of spoilage and pathogenic bacteria. This improves the shelf life of the product and ensures food safety. The main component responsible for the antimicrobial activity of garlic is allicin which also provides garlic its distinct flavour and aroma. Garlic inhibits the pathogenic disease-causing organisms, increases growth performance and disease resistance in fish. Garlic helps to improve the flesh quality and food calling effect when applied as a food additive; and extend the shelf-life of fish fillet. Thus, garlic extract, especially raw garlic juice, can be used as a natural antimicrobial agent: a potential natural fish preservative suitable for commercial application to extend the shelf-life of fish and fishery products as well as in modern aquaculture practices.

References

1. Aubourg S., Losada V., Gallardo J., Miranda M. and Barros?Velázquez, J. (2006) European Food Research and Technology, 223(2), 232-237.
2. Kannaiyan S.K., Gunasekaran J., Kannuchamy N., Thachil M.T., & Gudipati, V. (2015) Indian Journal of Natural Products and Resources, 6(2), 106-113.
3. Farid F.B., Latifa G.A., Nahid, M.N. and Begum, M. (2014a). Bangladesh Journal of Zoology, 42(2), 271-276.
4. Farid F.B., Latifa G.A., Nahid, M.N. and Begum M. (2014b). Journal of Agriculture and Veterinary Science, 7(9), 01-08.
5. Buzby J.C., Roberts T., Lin, C.T.J. and MacDonald, J.M. (2004) Agricultural Economic Report Number 741, United States Department of Agriculture, Washinton, DC, Economic Research Service.
6. Pereira de Abreu D.A., Paseiro Losada P., Maroto J. and Cruz, J.M. (2010) Food Res. Int., 43(5), 1277-1282.
7. Chong C.Y., Abu Bakar F., Russly A.R., Jamilah B. and Mahyudin, N.A. (2011) Int. Food Res. J., 18(3), 867-876.
8. Benhamed S, Guardiola F.A., Mars M. and Esteban M.Á. (2014) Vet. Microbiol., 171(1-2), 1-12.
9. Majolo C., Pilarski F., Chaves F.C.M., Bizzo H.R. and Chagas E.C. (2018) J. Essent. Oil Res., 30(5), 388-397.
10. Noor El Deen A.I.E. and Mohamed R.A. (2010) Rep. Opin., 1(6), 1-5.
11. Shalaby A.M., Khattab Y.A. and Abdel Rahman A.M. (2006) J. Venom. Anim. Toxins, 12(2), 172-201.
12. Musa N., Wei L.S., Seng C.T., Wee W. and Leong L.K. (2008) Global Journal of Pharmacology, 2(2), 31-36.
13. Stiles M.E. (1996) Antonie van leeuwenhoek, 70(2-4), 331-345.
14. Mukherjee P.K., Saritha G.S. and Suresh, B. (2002) Phytotherapy Res.,16(7), 692-695.
15. Nath S., Chowdhury S., Dora, K.C. and Sarkar, S. (2014a) Int. J. Eng. Res. Appl, 4(1), 26-32.
16. Hussein M.M.A.H., Hassan W.H., Moussa I.M.I. (2013) Int J Food Agric Environ., 11, 696-699.
17. Batcioglu K., Yilmaz Z., Satilmis B., Uyumlu A.B., Erkal H.S. et al. (2012) Eur. Rev. Med. Pharmaco., 16(3 Suppl), 47-57.
18. Harris J.C., Cottrell S.L., Plummer S. and Lloyd D. (2001) Applied Microbiology and Biotechnology, 57(3), 282-286.
19. Owhe-Ureghe U.B., Ehwarieme D.A. and Eboh D.O. (2010) Afr. J. Biotech., 9(21), 3163-3166.
20. Njue L., Kanja L.W., Ombui J.N., Nduhiu J.G. and Obiero D. (2014) East African Medical Journal, 91(12), 442-448.
21. Cavallito C. and Bailey J.H. (1944) J. Am. Chem. Soc., 66), 1950-1952.
22. Cellini L., Di Campli E., Masulli M., Di Bartolomeo S. and Allocati N. (1996) FEMS Immunol. Med. Micrbiol., 13(4), 273-277.
23. Rios J.L. and Recio M.C. (2005) J. Ethnopharmacol., 100(1-2), 80-84.
24. Yin M.C., Hwang S.W. and Chan, K.C. (2002) J. Agric. Food Chem., 50(21), 6143-6147.
25. Augusti K.T. (1996) Indian J. Exp. Biol., 34(7), 634-40.
26. Bordia T., Mohammed N., Thomson M. and Ali M. (1996) Prostaglandins, leukotrienes and essential fatty acids, 54(3), 183-186.
27. Nya E.J. and Austin, B. (2009) J. Fish Dis., 32(11), 963-970.
28. Mauti G.O., Mauti E.M., Ouno G.A. and Maronga B. (2015) Journal of Scientific and Innovative Research, 4(4), 178 - 181.
29. El-Sayed H.S., Chizzola R., Ramadan A.A. and Edris A.E. (2017) Food Chem., 221, 196?204.
30. Safithri M., Bintang M. and Poeloengan M. (2011) Media Peternakan, 34(3), 155-158.
31. Erguig M., Yahyaoui A., Fekhaoui M. and Dakki M. (2015) European Journal of Biotechnology and Bioscience, 8(3), 28-33.
32. Block E. (2017) Phosphorus, Sulfur, and Silicon and the Related Elements, 192(2), 141-144.
33. Wallock-Richards, D., Doherty C.J., Doherty L., Clarke D.J., Place M., Govan J.R.W. and Campopiano D.J. (2014) PLOS ONE, 9(12), e112726, 1-13.
34. Kris-Etherton P.M., Harris W.S. and Appel L.J. (2002) Circulation, 106(21), 2747-2757.
35. Simopoulos A.P. (2000) Poultry science, 79(7), 961-970.
36. Zhang M., Chen C., You C., Chen B., Wang S. and Li, Y. (2019) Aquaculture, 505, 488-495.
37. http://nfdb.gov.in/about-indian-fisheries.htm
38. http://www.fao.org/fishery/countrysector/naso_india/en
39. Harikrishnan R., Balasundaram C. and Heo M.S. (2011) Aquaculture, 317(1-4), 1-15.
40. Trust T.J. (1986) Ann. Rev. Microbiol., 40(1), 479-502.
41. Toranzo A.E., Magariños B. and Romalde J.L. (2005) Aquaculture 246(1-4): 37-61.
42. Subasinghe R.P. and Phillips M.J. (2002) Aquatic animal health management: opportunities and challenges for rural, small-scale aquaculture and enhanced fisheries development: Workshop introductory remarks. In: Arthur JR, Phillips MJ, Subasinghe RP, Reantaso MB and MacRae IH (ed.) Primary Aquatic Animal Health Care in Rural, Small Scale Aquaculture Development. FAO Fisheries Technical Paper No. 406, 1-5.
43. van den Bogaard A.E. and Stobberingh E.E. (2000) Int. J. Antimicrob. Agents, 14(4), 327-335.
44. Nath S., Chowdhury S. and Dora K.C. (2014b) IJAR, 2(4), 201-207.
45. Luchansky J.B. (1999) Atonie van Leeuwenhoek, 76, 335.
46. Ghaly A.E., Dave D., Budge S. and Brooks M. (2010) American Journal of Applied Sciences, 7(7), 859.
47. Mahmoud B.S.M., Yamazaki K., Miyashita K., Shin I. and Suzuki T. (2006) Food Chem., 99(4), 656-662.
48. Nath S., Chowdhury S. and Dora K.C. (2015) International Journal of Engineering Research and Applications, 5(4), 85-95.
49. Nath S., Chowdhury S., Sarkar S. and Dora K.C. (2017) Environment and Ecology, 35(4B), 3126-3130.
50. Sasmal D., Babu C.S. and Abraham T.J. (2005). Indian J. Fish., 52(2), 207-214.
51. Sathish K.K., Jayakumari A., Nagalakshmi K. and Venkateshwarlu G. (2014) Fish. Technol., 51, 179-186.
52. Jastrzebski Z., Leontowicz H., Leontowicz M., Namiesnik J., Zachwieja Z., et al. (2007) Food Chem. Toxicol., 45(9), 1626-1633.
53. Wangcharoen W. and Morasuk W. (2009) Maejo Int. J. Sci. Technol., 3(1), 60-70.