MOLECULAR ANALYSIS OF BACTERIAL COMMUNITIES AND DETECTION OF POTENTIAL PATHOGENS IN A RECIRCULATING AQUACULTURE SYSTEM FOR YELLOWTAIL CATFISH, Pangasius pangasius (Hamilton, 1822)

V. KOTRA1*, S. GHOSH2, F.H. RAHAMAN3, K.S. DAS4
1Sasya Shyamala Krishi Vigyan Kendra (SSKVK), IRDM Faculty Centre, Ramakrishna Mission Vivekananda Educational and Research Institute (RKMVERI), Arapanch, Sonarpur, South 24 Parganas, 700103, West Bengal, India
2Sasya Shyamala Krishi Vigyan Kendra (SSKVK), IRDM Faculty Centre, Ramakrishna Mission Vivekananda Educational and Research Institute (RKMVERI), Arapanch, Sonarpur, South 24 Parganas, 700103, West Bengal, India
3ICAR- Agricultural Technology Application Research Institute (ATARI), Ministry of Agriculture, Government of India, Sector III, Salt Lake City, Kolkata, 700097, India
4ICAR- Agricultural Technology Application Research Institute (ATARI), Ministry of Agriculture, Government of India, Sector III, Salt Lake City, Kolkata, 700097, India
* Corresponding Author : kotravashista6@gmail.com

Received : 01-07-2020     Accepted : 15-07-2020     Published : 30-07-2020
Volume : 12     Issue : 7       Pages : 1867 - 1870
Int J Microbiol Res 12.7 (2020):1867-1870

Keywords : Quantitative research, Applied Research, Problem-solving research, exploratory, and descriptive
Academic Editor : Takemi Otsuki, Abdel Raheem M. A., Marcos Antonio Pesquero, Dey S.
Conflict of Interest : None declared
Acknowledgements/Funding : Authors are thankful to Sasya Shyamala Krishi Vigyan Kendra (SSKVK), IRDM Faculty Centre, Ramakrishna Mission Vivekananda Educational and Research Institute (RKMVERI), Arapanch,Sonarpur, South 24 Parganas, West Bengal, India
Author Contribution : All authors equally contributed

Cite - MLA : KOTRA, V., et al "MOLECULAR ANALYSIS OF BACTERIAL COMMUNITIES AND DETECTION OF POTENTIAL PATHOGENS IN A RECIRCULATING AQUACULTURE SYSTEM FOR YELLOWTAIL CATFISH, Pangasius pangasius (Hamilton, 1822)." International Journal of Microbiology Research 12.7 (2020):1867-1870.

Cite - APA : KOTRA, V., GHOSH, S., RAHAMAN, F.H., DAS, K.S. (2020). MOLECULAR ANALYSIS OF BACTERIAL COMMUNITIES AND DETECTION OF POTENTIAL PATHOGENS IN A RECIRCULATING AQUACULTURE SYSTEM FOR YELLOWTAIL CATFISH, Pangasius pangasius (Hamilton, 1822). International Journal of Microbiology Research, 12 (7), 1867-1870.

Cite - Chicago : KOTRA, V., S. GHOSH, F.H. RAHAMAN, and K.S. DAS. "MOLECULAR ANALYSIS OF BACTERIAL COMMUNITIES AND DETECTION OF POTENTIAL PATHOGENS IN A RECIRCULATING AQUACULTURE SYSTEM FOR YELLOWTAIL CATFISH, Pangasius pangasius (Hamilton, 1822)." International Journal of Microbiology Research 12, no. 7 (2020):1867-1870.

Copyright : © 2020, V. KOTRA, et al, Published by Bioinfo Publications. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

Abstract

Raising interest for consumable marine items like fish, mollusks, algae etc. have scientists to discover progressively sustainable environmentally friendly, economically viable, and socially acceptable strategies for aquaculture production. Among all Recirculatory Aquaculture System best in any case, however RAS has its own disadvantages high chances of contamination with diseases which are microbial in origin, formation of super bugs, high cost intensive, continues monitoring etc. The motivation behind the investigation is to break down the complete microbial populace in a freshwater RAS and to discover any possible pathogens in RAS for Yellowtail catfish pangasius (Hamilton, 1822), for knowing the away from of the bacterial communities in the RAS framework traditional strategies are not sufficient because, there are no standard protocols to isolate all the microscopic organisms from sample so for community 16srRna examination is done by separating DNA legitimately from the sample. However, we were unable to discover expected pathogens in the drawn samples as the water used in RAS was not drawn from any water bodies, rather than drawing water from water table (ground water) and RAS established recently, maintained scientifically.

References

1. Moyle P.B. and Cech J.J. (2004) An Introduction to Ichthyology, 5th Edition page 465, ISBN-13: 9780131008472
2. Stentiford G.D., Sritunyalucksana K., Flegel T.W., Williams B.A.P., Withyachumnarnkul B., Itsathitphaisarn O., Bass D. (2017) PLoS Pathog., 13(2), e1006160.
3. Ksepka S.P., Rash J.M., Simcox B.L., Besler D.A., Dutton H.R., Warren M.B. and Bullard S.A. (2020) Journal of Fish Diseases, 43(7), 813-820.
4. Martzy R., Kolm C., Krska R., Mach R.L., Farnleitner A.H. and Reischer G.H. (2019) Analytical and Bioanalytical Chemistry, 411(9), 1695-1702.
5. Oliver J.D. (2005) J Microbiol., 43, 93-100.
6. Parte A.C. (2015) Nucleic Acids Res, 42(Database issue), D613-6.
7. Steinert G., Wemheuer B., Janussen D., Erpenbeck D., Daniel R., Simon M., Brinkhoff T., Schupp P.J. (2019) Frontiers in Marine Science 6, Art. Nr. 297.
8. Stilianos Louca, Florent Mazel, Michael Doebeli, Laura Wegener Parfrey (2019) Plos Biology, 17(2), e3000106.
9. Bartosz Kiersztyn, Ryszard Chróst, Tomasz Kali?ski, Waldemar Siuda, Aleksandra Bukowska, Grzegorz Kowalczyk & Karolina Grabowska. (2019) Scientific Reports, 9, 11144.
10. Fei Teng, Sree Sankar Darveekaran Nair, Pengfei Zhu, Shanshan Li, Shi Huang, Xiaolan Li, Jian Xu & Fang Yang (2018) Scientific Reports, 8, 16321, 3-21.
11. Nicholes Miranda Jane, Williamson Christopher James, Tranter Martyn, Holland Alexandra, Poniecka Ewa, Yallop Marian Louise (2019) Front. Microbiol., 10, 1366.
12. Rojas-Tirado P., Pedersen P.B., Vadstein O., Pedersen L.F. (2018) Aquacultural Engineering, 81, s80-88.
13. Saitou N. and Nei M. (1987) POLS Biology, Molecular Biology and Evolution, Page No 406-425.
14. Rusinko J. and McPartlon M. (2017) J Theor Biol., 414, 5-7.
15. Telles G.P., Araújo G.S., Walter M.E.M.T., Brigido M.M. and Almeida N.F. (2018) BMC Bioinformatics, 19(1),172.
16. Casillas S. and Barbadilla A. (2017) Genetics, 205, 1003.
17. Sievers F., Wilm A., Dineen D., Gibson T.J., Karplus K., Li W., Lopez R., McWilliam H., Remmert M., Söding J., Thompson J.D. and Higgins D.G. (2011) Mol. Syst. Biol., 7, 539.
18. Coffee L.L., Casey J.W., Bowser P.R. (2013) Veterinary Pathology, 50 (3), 390-403.
19. Louie M., Louie L., Simor A.E. (2006) CMAJ, 163 (3), 301-09.
20. Oliver J.D. (2007) J Microbiol., 43, 93-100.
21. Lu Han, Kaidi Wang, Lina Ma, Pascal Delaquis, Susan Bach, Jinsong Feng, Xiaonan Lu (2020) Applied and Environmental Microbiology, AEM.02566-19.
22. Zhong J., Zhao X. (2018) 3 Biotech 8, 28.
23. Byeong-Ju Lee and Soo Hyung Eo (2019) Journal of Forestry Research, 1-9.
24. Xiaoming Wang, Tong Liu, Yang Wu, Daibin Zhong, Guofa Zhou, Xinghua Su, Jiabao Xu, Charity F. Sotero, Adnan A. Sadruddin, Kun Wu, Xiao?Guang Chen, Guiyun Yan (2018) Molecular Ecology, 27(14), 2972-2985.
25. Jiang H., Dong H., Zhang G., Yu B., Chapman L.R. and Fields M.W. (2006) Appl Environ Microbiol.,72(6), 3832-45.
26. Paul Greenberg (2014) Earthb Journalisam Network, Page No 2-6.
27. Paula R.T., et al (2016) DTU- Aquaculture Engineering, Article number- 157777356, pages 1-9.
28. Kumar S., Stecher G., and Tamura K. (2016) Molecular Biology and Evolution, 33, Article msw054.