MICROBIAL BIOMASS CARBON AND ORGANIC CARBON FRACTIONS IN PADDY SOIL AS INFLUENCED BY RICE STUBBLE MANAGEMENT

S. NANDI1*, B.K. MEDHI2, R. BARUA3, M. SAIKIA4, H. SAIKIA5, K.P. BEZBARUAH6, P. KAKATI7, A. DAS8, N. BORAH9
1Department of Soil Science, Assam Agricultural University, Jorhat, 785013, Assam, India
2Professor (Soil Science), Department of Soil Science, Assam Agricultural University, Jorhat, 785013, Assam, India
3Professor (Soil Science), Department of Soil Science, Assam Agricultural University, Jorhat, 785013, Assam, India
4Principal Scientist (Agronomy) and i/c ADR, Directorate of Research (Agri), Assam Agricultural University, Jorhat, 785013, Assam, India
5College of Sericulture, Assam Agricultural University, Jorhat, 785013, Assam, India
6ADO, Department of Agriculture, Nonoi, Nagaon, 782001, Assam, India
7Department of Soil Science, Assam Agricultural University, Jorhat, 785013, Assam, India
8Department of Soil Science, Assam Agricultural University, Jorhat, 785013, Assam, India
9Professor (Soil Science), College of Horticulture, Assam Agricultural University, Jorhat, 785013, Assam, India
* Corresponding Author : 95survinandi@gmail.com

Received : 01-07-2020     Accepted : 17-07-2020     Published : 30-07-2020
Volume : 12     Issue : 7       Pages : 1871 - 1874
Int J Microbiol Res 12.7 (2020):1871-1874

Keywords : Carbon mineralization, Soil microbial biomass carbon, Rice stubble, Paddy soil
Academic Editor : Kumar D Shiva
Conflict of Interest : None declared
Acknowledgements/Funding : Authors are thankful to Department of Soil Science, Assam Agricultural University, Jorhat, 785013, Assam, India
Author Contribution : All authors equally contributed

Cite - MLA : NANDI, S., et al "MICROBIAL BIOMASS CARBON AND ORGANIC CARBON FRACTIONS IN PADDY SOIL AS INFLUENCED BY RICE STUBBLE MANAGEMENT." International Journal of Microbiology Research 12.7 (2020):1871-1874.

Cite - APA : NANDI, S., MEDHI, B.K., BARUA, R., SAIKIA, M., SAIKIA, H., BEZBARUAH, K.P., KAKATI, P., DAS, A., BORAH, N. (2020). MICROBIAL BIOMASS CARBON AND ORGANIC CARBON FRACTIONS IN PADDY SOIL AS INFLUENCED BY RICE STUBBLE MANAGEMENT. International Journal of Microbiology Research, 12 (7), 1871-1874.

Cite - Chicago : NANDI, S., B.K. MEDHI, R. BARUA, M. SAIKIA, H. SAIKIA, K.P. BEZBARUAH, P. KAKATI, A. DAS, and N. BORAH. "MICROBIAL BIOMASS CARBON AND ORGANIC CARBON FRACTIONS IN PADDY SOIL AS INFLUENCED BY RICE STUBBLE MANAGEMENT." International Journal of Microbiology Research 12, no. 7 (2020):1871-1874.

Copyright : © 2020, S. NANDI, et al, Published by Bioinfo Publications. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

Abstract

A laboratory experiment was conducted during November 2018 to April 2019 to evaluate the effects of rice stubble (RS) management practices on soil organic carbon fractions and microbial biomass carbon in a rice soil through a fifteen weeks incubation period under constant moisture regime. Untreated and glyphosate-yogurt treated rice stubble was either incorporated or left on the surface of soil-filled (15 cm depth on 5 cm sand at the bottom) poly vinyl chloride (PVC) pipe (25 cm long and 8.44 cm diameter), mounted on tray maintaining a constant water depth of 5 cm and incubated for 105 days. The evolution of CO2, organic carbon, easily oxidizable carbon and microbial biomass carbon were monitored periodically during the experiment. Incorporation of untreated rice stubble influenced organic carbon content of soil at ninth and twelfth week of incubation. The easily oxidizable organic carbon in soil was affected neither by incorporation nor glyphosate-yogurt treatment of rice stubble. Soil microbial biomass carbon was influenced only at ninth week of incubation due to incorporation of rice stubble, with or without glyphosate-yogurt treatment.

References

1. Borah N. (2007) Souvenir, Seminar cum Workshop on ‘Saving soil and crop lands’, State land Use Board and Soil Conservation Department, Assam, 27th August 2007, pp 36-38.
2. Anonymous (2000) Rapid composting techniques for rice straw. The Hindu. Online edition. July 27, 2000.
3. Devi S., Sharma C.R. & Singh K. (2012) Brazilian Journal of Microbiology, 43, 288-296.
4. Borah N., Barua R., Nath D., Hazarika K., Phukon A., Goswami K. & Barua D.C. (2016) Procedia Environmental Sciences, 35, 771-780.
5. Borah N., Barua R., Pathak P.K., Barua I.C., Hazarika K. & Phukan A. (2016) International Journal of Agriculture Sciences, 8, 1350-1353.
6. Borah N., Pathak P.K., Barua R., Hazarika K., Phukon A. and Bezbaruah K.P. (2016) Stubble decomposition (in situ) of two rice varieties through microbial inoculation. In Ghosh, S.K. (ed) Utilization and Management of Bioresources. Proceedings of 6th IconSWM 2016, Pages 65-76.
7. Zhao H., Yu H., Yuan X., Piao R., Li H., Wang X. & Cui Z. (2014) Journal of Microbiology and Biotechnology, 24, 585-591.
8. Bezbaruah K.P. (2017) M.Sc. (Agri) Thesis, Assam Agricultural University, Jorhat, 785013, Assam, India.
9. Singh Y. (2011) Crop residue management for improving soil and crop productivity. In, A.R. Sharma and U.K. Behera (eds). Resource conserving techniques in crop production (pp. 166-189). Scientific publishers, India.
10. Verhulst N., Govaerts B., Verachtert E., Castellanos-Navarrete A., Mezzalama M., Wall P.C., Chocobar A., Deckers J. & Sayre K.D. (2010) Conservation agriculture, improving soil quality for sustainable production systems? In Lal, R., Stewart, B.A. (Eds.), Advances in Soil Science, Food Security and Soil Quality. CRC Press, Boca Raton, FL, USA, pp. 137-208.
11. Mulumba L.N. & Lal R. (2008) Soil and Tillage Research, 98,106-111.
12. Zhang X.H., Li L.Q. & Pan G.X. (2007) Journal of Environmental Science, 19, 319-326.
13. Nicolardot B., Recous S. & Mary B. (2001) Plant and Soil, 228, 83-103.
14. Borken W., Davidson E.A., Savage K., Gaudinski J. & Trumbore S.E. (2003) Soil Science Society America Journal, 67, 1888-1896.
15. Lomander A., Katterer T. & Andren O. (1998) Soil Biology and Biochemistry. 30, 2017-2022.
16. Pan G., Li L., Zhang X. (2003) Advance in Earth Science, 18, 609-618.
17. Pan G., Li L. & Wu L. (2004) Global Change Biology, 10, 79-92.
18. Govaerts B., Verhulst N., Castellanos-Navarrete A., Sayre K.D., Dixon J. & Dendooven L. (2009) Critical Reviews in Plant Sciences, 28, 97-122.
19. Zhou W., Hui D. & Shen W. (2014) PLoS ONE, 9, e92531.
20. Spedding T.A., Hamel C., Mehuys G.R. & Madramootoo C.A. (2004) Soil Biology and Biochemistry, 36, 499-512.
21. Mandal K.G., Mishra A.K., Hati K.M., Bandyopadhyay K.K., Ghosh P.K. & Mohanty M. (2004) Food, Agriculture and Environment, 2, 224-231.
22. Garg S. & Bahl G.S. (2008) Bioresource Technology, 99, 5773-5777.
23. Zhang G., Bo G., Zhang Z., Kong F., Wang Y. & Shen G. (2016) Sustainability. 8, 710.
24. Coleman D.C., Anderson R.V., Cole C.V., Elliott E.T., Woods L. & Campion M.K. (1978) Microbial Ecology, 4, 373-380.
25. Walkley A. & Black C.A. (1934) Soil Science, 37, 29-34.
26. Blair G.J., Lefroy R.D.B. & Lisle L. (1995) Australian Journal of Agricultural and Resource Economics, 46, 1459-1466.
27. Jenkinson D.S. & Powlson D.S. (1976) Soil Biology and Biochemistry, 8, 209-213.
28. Voroney R.P., Winter J.P. & Beyaret R.P. (1993) Soil microbial biomass C and N. In Carter, M.R. (ed.) Soil sampling and methods of analysis. Lewis Publishers, CRC Press, Boca Raton, FL. Pages 277-286.
29. Kusel K., Roth U. & Drake H.L. (2002) Environmental Microbiology, 4, 414-421.
30. Bhattacharyya P., Roy K.S., Neogi S., Adhya T.K., Rao K.S. & Manna M.C. (2012) Soil and Tillage Research, 124,119-130.
31. Ibrahim M., Cao C.G., Zhan M., Li C.F. and Iqbal J. (2015) International Journal of Environment Science and Technology, 12, 263-274.
32. Thongjoo C., Miyagawa S. & Kawakubo N. (2005) Plant Production Science, 8(4), 475-481.
33. Juan L., Yong H. & Zu-Cong C. (2009) Pedosphere, 19, 389-397.
34. Stella M. & Emmyrafedziawati A.K. (2015) Journal of Tropical Agriculture and Food Science. 43, 119-127.
35. Kato S., Haruta S., Cui Z.J., Ishii M. & Igarashi Y. (2005) Applied Environmental Microbiology, 71, 7099-7106.
36. Tuerson S., Wongwilaiwalin S., Champreda V., Leethochawalit M., Nopharatana A., Techkarnjanaruk S. & Chairprasert P. (2013) Bioresource Technology, 144, 579-586.
37. Wongwilaiwalin S., Rattanachomsri U., Laothanachareon T., Eurwilaichitr L., Igarashi Y. & Champreda V. (2010) Enzyme and Microbial Technology, 47, 283-290.
38. Yang Y.H., Wang B.C., Wang Q.H., Xiang L.J. & Duan C.R. (2004) Colloids and Surfaces B, Biointerfaces, 34, 1-6.
39. Xionghui J., Jiamei W., Hua P., Lihong S., Zhenhua Z., Zhaobing L., Faxiang T., Liangjie H. & Jian Z. (2012) Journal of Science of Food and Agriculture, 92,1038-1045.
40. Zhu L., Hu N., Zhang Z., Xu J., Tao B. & Meng Y. (2015) Catena, 135, 283-289.
41. Wang W., Lai D.Y.F., Wang C., Pan T. & Zeng C. (2015) Soil and Tillage Research, 152, 8-16.
42. Ye R., Doane T.A., Morris J. & Horwath W.R. (2015) Soil Biology and Biochemistry, 81, 98-107.
43. Bastida F., Torres I.F., Hernandez T., Bombach P., Richnow H.H. & García C. (2013) Soil Biology and Biochemistry, 57, 892-902.
44. Blagodatskaya E.V., Blagodatsky S.A., Anderson T.H. & Kuzyakov Y. (2009) European Journal of Soil Science, 60, 186-197.
45. Majumder B. & Kuzyakov Y. (2010) Soil and Tillage Research, 109, 94-102.