IN VITRO STUDIES ON CHARACTERIZATION AND INVESTIGATION OF BURKHOLDERIA SP. FOR POTENTIAL SOLUBILIZATION OF MINERAL NUTRIENTS

A. SANDANAKIROUCHENANE1*, T. GEETHA2, P. EZHILMALAR3, M. THANGARAJU4
1Department of Microbiology, Pondicherry University, Puducherry, 605 014, India
2Department of Agricultural Microbiology, APAC, Kalavai 632 506, India
3Department of Agricultural Microbiology, APAC, Kalavai 632 506, India
4Department of Agricultural Microbiology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu 641003, India
* Corresponding Author : sandana03@yahoo.co.in

Received : 24-08-2018     Accepted : 07-09-2018     Published : 30-09-2018
Volume : 10     Issue : 9       Pages : 1348 - 1354
Int J Microbiol Res 10.9 (2018):1348-1354

Keywords : Endophytes, Biochemical activity, Polysaccharide production, Soluble phosphorus, Titrable acidity, Mineral solubilization
Conflict of Interest : None declared
Acknowledgements/Funding : We are thankful to Department of Microbiology, Pondicherry University, Puducherry and Department of Agricultural Microbiology, Tamil Nadu Agricultural University, Coimbatore for providing the facilities to carry out this work
Author Contribution : All author equally contributed

Cite - MLA : SANDANAKIROUCHENANE, A., et al "IN VITRO STUDIES ON CHARACTERIZATION AND INVESTIGATION OF BURKHOLDERIA SP. FOR POTENTIAL SOLUBILIZATION OF MINERAL NUTRIENTS." International Journal of Microbiology Research 10.9 (2018):1348-1354.

Cite - APA : SANDANAKIROUCHENANE, A., GEETHA, T., EZHILMALAR, P., THANGARAJU, M. (2018). IN VITRO STUDIES ON CHARACTERIZATION AND INVESTIGATION OF BURKHOLDERIA SP. FOR POTENTIAL SOLUBILIZATION OF MINERAL NUTRIENTS. International Journal of Microbiology Research, 10 (9), 1348-1354.

Cite - Chicago : SANDANAKIROUCHENANE, A., T. GEETHA, P. EZHILMALAR, and M. THANGARAJU. "IN VITRO STUDIES ON CHARACTERIZATION AND INVESTIGATION OF BURKHOLDERIA SP. FOR POTENTIAL SOLUBILIZATION OF MINERAL NUTRIENTS." International Journal of Microbiology Research 10, no. 9 (2018):1348-1354.

Copyright : © 2018, A. SANDANAKIROUCHENANE, et al, Published by Bioinfo Publications. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

Abstract

The present investigation aimed to develop a potential bioinoculant with Burkholderia isolates. Hence isolates were taken from the root, stem and leaf samples of four different crops viz., Rice, Maize, Sugarcane and Black gram. The isolates which have provided maximum growth in the N-free BAz medium were further characterized morphologically and biochemically, when compared with the standard strains the organisms were identified as Burkholderia isolates (RB1, MB2, SB3 and BB4). They were produced yellow colour colonies with round and convex in shape, motile in nature and also produced pale yellow surface pellicle, when grown on N-free BAz semi solid medium. All the isolates were gram negative and showed positive reaction for catalase activity, citrate utilization, lipase activity, methyl red, nitrate reduction and gelatin hydrolysis as that of reference strains. The different nutrient sources were used by the Burkholderia isolates, comparatively better growth in the carbon sources cellulose and glucose as well as nitrogen sources tryptamine and citrullin. The growth of reference strain B. vietnamiensis and the isolates MB2 and SB3 showed better growth at pH 5 and 6, whereas the isolates RB1 and BB4 showed higher growth that pH 7. The isolate BB4 recorded maximum titrable acidity and soluble phosphorus, which was closely followed by SB3 and other Burkholderia isolates. The isolate BB4 and B. tropicalis were able to solubilize the insoluble compounds viz., Zn3 (PO4)2, Zn O, Zn CO3, Ca3 (PO4)2, Mg3 (PO4)2 and rock phosphate. None of the isolates and reference strains solubilizes magnesium tri silicate, nickel phosphate and iron sulphate.

References

1. Burkholder W. (1950) Phytopathology, 40, 115-118.
2. Coenye T., Vandamme P. (2003) Environmental Microbiology, 5, 719-729.
3. Epstein E. (1972) John Wiley & Sons, Inc New York.
4. Brown M.E. (1974) Annual Review Phytopathology, 12, 181-197.
5. Kucey R.M.N. (1983) Canadian Journal of Soil Science, 63, 671-678.
6. Chabot H., Antoun Cescas M.P. (1993) Canadian Journal of Microbiology, 39, 941-947.
7. Ternan N.G., Quinn J.P. (1998) Biochemical Biophysical Research Communication, 248, 378-381.
8. Ternan N.G., Hamilton J.T.G., Quinn J.P. (2000) Archives Microbiology, 173, 35-41.
9. Rodriguez H., Rosssolini G.M., Gonzalez T., Li J., Glick B.R. (2000) Current
10. Microbiology, 40, 362-366.
11. Mullan A., Quinn J.P., Mc Grath J.W. (2002) Anal Biochemistry, 308, 294-299.
12. Saravanan V.S. (1999) M.Sc. (Ag.), Thesis, Tamil Nadu Agricultural University, Coimbatore, 111.
13. Anthoni Raj S. (2002) Biofertilizer News Letter, 8-10.
14. Crane F.L., Sun I.L., Clark M.G., Grebing C., Low H. (1985) Biochemica et Biophysica Acta, 811, 233-264.
15. Hughes M.N., Poole R.K. (1991) Journal of General Microbiology, 137, 725-734.
16. Wakatsuki T. (1995) Journal of Indian Microbiology, 14, 169-177.
17. Rengel Z., Ross G., Hirch P. (1998) Journal of Plant Nutrition, 21, 99-113.
18. Gotschlich A., Hubber B., Geisenberger O. (2001) Systematic Applied Microbiology, 24, 1-14.
19. Corbett C.R., Burtnick M.N., Kooi C., Woods D.E., Sokol P.A. (2003) Microbiology,149, 2263-2271.
20. Sandanakirouchenane A., Ekramul Haque., Geetha T. (2017) International Journal of Current Microbiology and Applied Science, 6(11), 2780-2796.
21. Gillis M., Tran Van V., Bardin R., Goor M., Hebbar P., Willems A., Segers P.,
22. Kerster K., Heulin T., Fernandez M.P. (1995) International Journal of Systematic Bacteriology, 45, 274-289.
23. Skerman V.A.D. (1969) The Williams and Wilkins Company, Baltimore.
24. Rangaswami G. (1975) Prentice Hall (P) Ltd. New Delhi, 250.
25. Seeley W., Van demark J. (1981) The W.H. Freeman and Company Inc, San Francisco.
26. Neyra C.A., Atkinson A., Olubayi O. (1977) NATO ASI Ser G, 37, 429-439.
27. Smibert R.M., Krieg N.R. (1981) P. Gerhardt, Academic Publisher, New York, 400 – 450.
28. Lysenko O. (1961) Journal of General Microbiology, 25, 379.
29. Christensen W.B. (1946) Journal of Bacteriology, 52, 461.
30. Simmons J.S. (1976) Journal of Infectious Disease, 39, 209.
31. Gillus R.P. (1956) Journal of Clinical Pathology, 9, 368.
32. Omeara R.A.Q. (1931) Journal of Pathology and Bacteriology, 34, 401.
33. Frateur J. (1950) Cellule, 53, 287-392.
34. Aneja K.R. (1996) New Age International (P) Ltd (2nd ed.). New Delhi, 190-217.
35. Olsen S.R., Cole C.V., Watnabe F.S., Dean L. (1954) U.S.D.A. Circ., U.S. Govt. Printing Office, Washington DC, 939.
36. Fasim F., Ahmed N., Parsons R., Gadd G.M. (2002) FEMS Microbiology Letter, 10522, 1-6.
37. Panse V.G., Sukhatme P.V. (1976) I.C.A.R. Publ., New Delhi.
38. Sindhu S.S., Suneja S., Dadarwal K.R. (1997) K.R. Dadarwal, Scientific Publishers, Jodhpur, India, 149-156.
39. Natarajan T., Subramanian P. (1995) Paper presented at the 36th Annual Conference of the Association of Microbiologists of India (Abstract) Hisar, 110.
40. Estrada De-Los-Santos E., Bustillos-Cristales R., Caballero-Mellado J. (2001) Applied Environmental Microbiology, 67, 2790-2798.
41. Parke J.L. (1991) In: The Rhizosphere and Plant Growth (eds.) D.L. Keister and P.B. Cregan, Kluwer Academic ress, Dordrecht, 33-42.
42. Mc Loughlin T., Quinn J., Bettermann A., Bookland R. (1992) Applied Environmental Microbiology, 58, 1760-1763.
43. Bowers J., Parke J. (1993) Phytopathology, 83, 1466-1473.
44. Hebbar K.P., Martel M.H., Heulin T. (1998) European Journal of Plant Pathology, 104, 29-36.
45. Urakami T., Ito-Yoshida C., Araki H., Kijima T., Suzuki K., Komagata K. (1994) International Journal of Systematic Bacteriology, 44, 235-245.
46. Viallard V., Poirer I., Cournoyer B., Haurat J., Wiebkin S., Ophel-Keller K., Balandreau J. (1998) International Journal of Systematic Bacteriology, 48, 549-563.
47. Vandamme P., Holmes B., Vancanneyt M., Coenye T., Hoste B., Coopman R. (1997) International Journal of Systematic Bacteriology, 47, 1188-1200.
48. Brett P.J., Deshazer D., Woods D.E. (1998) International Journal of Systematic Bacteriology, 48, 317-320.
49. Leigh J.A., Coplin D.L. (1992) Annual Review Microbiology, 46, 307-346.
50. Burbage D.A., Sasser M. (1982) Phytopathology Abstract, 72, 706.
51. Pravin K., Sridar R. (2015) International Journal of Agriculture, Environment and Biotechnology, 3, 681-689.
52. Goldstein A. (1994) A. Torriani-Gorini, E. Yagil, S. Silver, ASM press, Washington D C, 197-203.
53. Rodriguez H., Fraga R. (1999) Biotechnology Advance, 17, 319-339.
54. Drew M.C. (1990) J M Lynch Wiley-Inter science Chichester, 35-57.
55. Swaby R.J., Sperber (1958) Proc. Univ. of Nottigham, E.G. Butterworths
56. Scientific Publications, 88, Kingsway, London. W.C, 2.
57. Asea P.E.A., Kucey R.M.N., Stewart J.W.B. (1988) Soil Biology and Biochemistry, 20, 459-464.
58. Thomas G.V. (1985) Plant Soil, 87, 357-364.
59. Villegas J., Fortin J.A. (2001) Canadian Journal of Botany, 79, 865-870.
60. Bar-Yosef B., Wolfram R.D.J.H., Richman E. (1999) Soil Science Society of
61. America Journal, 63, 1703-1708.
62. Di Simine C.D., Sayer J.A., Gadd G.M. (1998) Biology and fertility of Soils, 28, 87-94.
63. Penrose D.M., Glick B.R. (2003) Physiologia Plantarum, 118, 10-15.
64. Iti Gontia M., Swapnil S., Sharad T. (2017) Rhizosphere, 3, 185–190.