ISOLATION AND SCREENING FOR MULTI-TRAIT PLANT GROWTH PROMOTING ACTINOBACTERIA FROM ORGANIC SUGARCANE RHIZOSPHERE

ARIANA ALVES RODRIGUES1*, MARCUS VINICIUS FORZANI ARAUJO2, RENAN DE SOUZA SOARES3, BRUNO FRANCESCO RODRIGUES DE OLIVEIRA4, SERGIO TADEU SIBOV5, JOSE DANIEL GONCALVES VIEIRA6
1Laboratory of Environmental Microbiology and Biotechnology (LAMAB), Institute of Tropical Pathology and Public Health, Federal University of Goias, Goiania, Goias, 74605050, Brazil
2Laboratory of Environmental Microbiology and Biotechnology (LAMAB), Institute of Tropical Pathology and Public Health, Federal University of Goias, Goiania, Goias, 74605050, Brazil
3Laboratory of Environmental Microbiology and Biotechnology (LAMAB), Institute of Tropical Pathology and Public Health, Federal University of Goias, Goiania, Goias, 74605050, Brazil
4Laboratory of Molecular and Marine Bacteriology, Institute of Microbiology Paulo de Goes, Federal University of Rio de Janeiro, Rio de Janeiro, 74690900, Brazil
5Laboratory of Tissue Culture, School of Agronomy, Federal University of Goias, Goiania, Goias, 74605050, Brazil
6Laboratory of Environmental Microbiology and Biotechnology (LAMAB), Institute of Tropical Pathology and Public Health, Federal University of Goias, Goiania, Goias, 74605050, Brazil
* Corresponding Author : ariana.biomed@gmail.com

Received : 27-03-2018     Accepted : 21-05-2018     Published : 30-05-2018
Volume : 10     Issue : 5       Pages : 1193 - 1198
Int J Microbiol Res 10.5 (2018):1193-1198
DOI : http://dx.doi.org/10.9735/0975-5276.10.5.1193-1198

Keywords : Rhizosphere, Organic Sugarcane, Phosphate Solubilization, Nitrogen Free Medium, Streptomyces
Academic Editor : Raylane Pereira Gomes
Conflict of Interest : None declared
Acknowledgements/Funding : The authors would like to thank Jalles Machado and Goiasa-Goiatuba Álcool Ltda for allowing and assisting the collection of rhizospheric soil, Centro de Tecnologia Canavieira (CTC) for providing the Fusarium strain used in this study. Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (Capes) for providing scholarship to the first author and the Graduate Program in Environmental Sciences (CIAMB) for financial assistance.
Author Contribution : All author equally contributed

Cite - MLA : RODRIGUES, ARIANA ALVES, et al "ISOLATION AND SCREENING FOR MULTI-TRAIT PLANT GROWTH PROMOTING ACTINOBACTERIA FROM ORGANIC SUGARCANE RHIZOSPHERE." International Journal of Microbiology Research 10.5 (2018):1193-1198. http://dx.doi.org/10.9735/0975-5276.10.5.1193-1198

Cite - APA : RODRIGUES, ARIANA ALVES, FORZANI ARAUJO, MARCUS VINICIUS, SOARES, RENAN DE SOUZA, DE OLIVEIRA, BRUNO FRANCESCO RODRIGUES, SIBOV, SERGIO TADEU, GONCALVES VIEIRA, JOSE DANIEL (2018). ISOLATION AND SCREENING FOR MULTI-TRAIT PLANT GROWTH PROMOTING ACTINOBACTERIA FROM ORGANIC SUGARCANE RHIZOSPHERE. International Journal of Microbiology Research, 10 (5), 1193-1198. http://dx.doi.org/10.9735/0975-5276.10.5.1193-1198

Cite - Chicago : RODRIGUES, ARIANA ALVES, MARCUS VINICIUS FORZANI ARAUJO, RENAN DE SOUZA SOARES, BRUNO FRANCESCO RODRIGUES DE OLIVEIRA, SERGIO TADEU SIBOV, and JOSE DANIEL GONCALVES VIEIRA. "ISOLATION AND SCREENING FOR MULTI-TRAIT PLANT GROWTH PROMOTING ACTINOBACTERIA FROM ORGANIC SUGARCANE RHIZOSPHERE." International Journal of Microbiology Research 10, no. 5 (2018):1193-1198. http://dx.doi.org/10.9735/0975-5276.10.5.1193-1198

Copyright : © 2018, ARIANA ALVES RODRIGUES, et al, Published by Bioinfo Publications. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

Abstract

Rhizospheric actinobacteria associated to organic cultivation are essential in nutrient cycling and plant growth promotion. The aim of this study was to isolate and select in vitro actinobacteria displaying multiple plant growth promoting traits associated with the rhizosphere of sugarcane undergoing organic management. The isolates were evaluated regarding their ability to produce plant growth promoting traits. Of the 21 isolates, 57% produced at least one of the evaluated traits. Isolates ABC92 and ABC32 produced 60.28 and 55.36 μg mL-1 of fitohormone in 21 days, whereas isolates ANC48 and ANU34 were the best solubilizers, solubilizing 8.93 and 8.92 μg mL-1 phosphate. A total of 29% of the microorganisms were able to grow in nitrogen-free media and 24% were ammonia producers. Isolates ABC31, ANC48 and ANU49 were able to inhibit Fusarium moniliforme growth. All actinobacteria identified in this study belonged to the Streptomyces genus and presented potential as plant growth promoting agents.

References

1. Araújo A.S.F., Santos V.B. and Monteiro R.T.R. (2008) European Journal of Soil Biology, 44(2), 225-230.
2. Duarte F.C., Cardoso M.G., Santiago W.D., Machado A.M.R. and Nelson D.L. (2017) Revista Ciência Agronômica, 48(2), 288-295.
3. Condron L.M., Cameron K.C., Di H.J., Clough T.J., Forbes E.A., McLaren R.G. and Silva R.G. (2000) New Zealand Journal of Agricultural Research, 43(4), 443-466.
4. Xia Y., DeBolt S., Dreyer J., Scott D. and Williams M.A. (2015) Frontiers in Plant Sciences, 6, 1-10.
5. Rahmann G., Ardakani M.R., Bàrberi P., Boehm H., Canali S., Chander M., Rembia E. and Zanoli R. (2016) Organic Agriculture, 7(3), 169-197.
6. Lori M., Symnaczik S., Mäder P., De Deyn G. and Gattinger A. (2017) PLoS ONE, 12(7), 1-25.
7. Garbeva P., Van Veen J.A. and Van Elsas J.D. (2004) Annual Review of Phytopathology, 42(1), 243-270.
8. Das B.B. and Dkhar M.S. (2010) NeBio, 1, 1-7.
9. Wang S., Li Z. and Fan G. (2012) African Journal of Microbiology Research, 6(24), 5077-5085.
10. Järvan M. and Edesi L. (2015) Zemdirbyste-Agriculture, 102(1), 15-22.
11. Sousa C.D.S., Soares A.C.F. and Garrido M.D.S. (2008) Scientia Agricola, 65, 50-55.
12. Vessey J.K. (2003) Plant and Soil, 255, 571-586.
13. Khalid A., Arshad M. and Zahir Z.A. (2004) Journal of Applied Microbiology, 96(3), 473-480.
14. Ahemad M. and Kibret M. (2014) Journal of King Saud University – Science, 26(1), 1-20.
15. Walker T.S., Bais H.P., Grotewold E., Vivanco J.M., Walker T.S., Bais H.P. and Vivanco J.M. (2003) Plant Physiology, 132(1), 44-51
16. Bhattacharyya P.N. and Jha D.K. (2012) World Journal of Microbiology and Biotechnology, 28(4), 1327-1350.
17. Anwar S., Ali B. and Sajid I. (2016) Frontiers in Microbiology, 7(8), 1-11.
18. Viaene T., Langendries S., Beirinckx S., Maes M. and Goormachtig S. (2016) FEMS Microbiology Ecology, 92(8), 1-10.
19. Glick B.R., Penrose D.M. and Li J. (1998) Journal of Theoretical Biology, 190, 63-68.
20. Ryu C.M., Hu C.H., Locy R.D. and Kloepper J.W. (2005) Plant and Soil, 268(1), 285-292.
21. Martínez-Viveros O., Jorquera M., Crowley D., Gajardo G. and Mora M. (2010) Journal of Soil Science and Plant Nutrition, 10(3), 293-319.
22. Vejan P., Abdullah R., Khadiran T., Ismail S., and Nasrulhaq B.A. (2016) Molecules, 21(5), 573.
23. Inui-Kishi R.N., Kishi L.T., Picchi S.C., Barbosa J.C., Lemos M.T.O., Marcondes J. and Lemos E.G.M. (2012) ARPN Journal of Engineering and Applied Sciences, 7(11), 1446-1454.
24. Beneduzi A., Moreira F., Costa P.B., Vargas L.K., Lisboa B.B., Favreto R. and Passaglia L.M.P. (2013) Applied Soil Ecology, 63, 94-104.
25. Rodrigues A.A., Forzani M.V., Soares R.S., Sibov S.T. and Vieira J.D.G. (2016) Pesquisa Agropecuária Tropical, 46(2), 149-158.
26. Silva M.D.O., Freire F.J., Kuklinsky-Sobral J., Oliveira C.A., Betânia M., Freire S. and De V.X. (2016) African Journal of Microbiology Research, 10(37), 1586-1594.
27. Francis I., Holsters M. and Vereecke D. (2010) Applied Microbiology, 12(1), 1-12.
28. Barka E.A., Vatsa P., Sanchez L., Gaveau-Vaillant N., Jacquard C., Klenk H.P., Ouhdouch Y. and Van Wezel G.P. (2016) Microbiology and Molecular Biology Reviews, 80(1), 1-43.
29. Kim T.U., Cho S., Han J.H., Shin Y.M., Lee H.B. and Kim S.B. (2012) The Journal of Microbiology, 50(1), 50-57.
30. Alekhya G. and Gopalakrishnan S. (2016) African Journal of Biotechnology, 15(33), 1781-1788.
31. Getha K. and Vikineswary S. (2002) Journal of Industrial Microbiology and Biotechnology, 28(6), 303-310.
32. Srividya S., Thapa A., Bhat D.V., Golmei K. and Nilanjan D. (2012) European Journal of Experimental Biology, 2, 163-173.
33. Yandigeri M.S., Malviya N., Solanki M.K., Shrivastava P. and Sivakumar G. (2015) World Journal of Microbiology and Biotechnology, 31(8), 1217-1225.
34. Jog R., Pandya M., Nareshkumar G. and Rajkumar S. (2014) Microbiology, 160, 778-788.
35. Hamdali H., Moursalou K., Tchangbedji G., Ouhdouch Y. and Hafidi M. (2012) African Journal of Biotechnology, 11, 312-320.
36. Dahal B., NandaKafle G., Perkins L. and Brözel V.S. (2017) Microbiological Research, 195, 31-39.
37. Brzezinska M.S., Jankiewicz U. and Walczak M. (2013) International Biodeterioration and Biodegradation, 84, 104-110.
38. Bui H. (2014) International Journal of Recycling of Organic Waste in Agriculture, 48, 1-8.
39. Adamovic D., Djalovic I. and Mrkovacki N. (2015) Ratarstvo I Povrtarstvo, 52(1), 1-6.
40. Velmourougane K. (2016) Scientifica, 2016, 1-9.
41. Hamdali H., Hafidi M., Virolle M.J. and Ouhdouch Y. (2008) World Journal of Microbiology and Biotechnology, 24(1), 2565-2575.
42. Santos I.B., Lima D.R.M., Barbosa J.G., Oliveira J.T.C., Freire F.J. and Kuklinsky-Sobral J. (2012) Bioscience Journal, 28(1), 142-149.
43. Wellington E.M.H. and Cross T. (1983) Progress in Industrial Microbiology, 17, 7-36.
44. Shirling E.B. and Gottlieb D. (1966) International Journal of Systematic Bacteriology, 16, 313-340.
45. Goudjal Y., Toumatia O., Sabaou N., Barakate M., Mathieu F. and Zitouni A. (2013) World Journal of Microbiology & Biotechnology, 29(10), 1821-1829.
46. Gordon S.A. and Weber R.P. (1951) Plant Physiology 26, 192-195.
47. Nautiyal C.S. (1999) FEMS Microbiology Letters, 170, 265-270.
48. Nosrati R., Owlia P., Saderi H., Rasooli I. and Malboobi M.A. (2014)
Iranian Journal of Microbiology, 6, 285-295
49. Dobereiner J., Marriel I.E. and Nery M. (1976) Canadian Journal of Microbiology, 22(10), 1464-1473.
50. Park M., Kim C., Yang J., Lee H., Shin W., Kim S. and Sa T. (2005)
Microbiology Research, 160(2), 127-133.
51. Cappuccino J.G. and Sherman N. (1996) The Benjamin Cummings Publishing Company, 208.
52. Dey R., Pal K.K., Bhatt D.M. and Chauhan S.M. (2004) Microbiological Research, 159, 371-394.
53. Walpola B.C. and Yoon M. (2013) African Journal of Microbiology Research, 7, 3534-3541.
54. Cattelan A.J. (1999) Embrapa Soja, 1-36.
55. Stamford T.L., Araújo J.M. and Stamford N.P (1998) Ciência e Tecnologia de Alimentos, 18(4), 382-385.
56. Kasana R.C., Salwan R., Dhar H., Dutt S. and Gulati A. (2008) Current Microbiology, 57(5), 503-507.
57. El-Sayed W.S., Akhkha A., El-Naggar M.Y. and Elbadry M. (2014) Frontiers in Microbiology, 5, 1-11.
58. Ferreira D.F. (2011) Ciência e Agrotecnologia, 35(6), 1039-1042.
59. Van Soolingen D., De Haas P.E., Hermans P.W. and Van Embden J.D. (1994) Methods in Enzymology, 235, 196-205.
60. Lane D. (1991) John Wiley & Sons, Chichester, 115-147.
61. Sambrook J.R. and Russell D. (2001) The Quarterly Review of Biology, 76(3), 348-349.
62. Altschul S.F., Gish W., Miller W., Myers E.W. and Lipman D.J. (1990) Journal of Molecular Biology, 215(3), 403-410.
63. Higgins D., Thompson J., Gibson T., Thompson J.D., Higgins D.G. and Gibson T.J. (1994) Nucleic Acids Research, 22, 4673-4680.
64. Kumar S., Stecher G. and Tamura K. (2016) Molecular Biology and Evolution, 33(7), 1870-1874.
65. Saitou N. and Nei M. (1987) Molecular Biology and Evolution 4, 406-425.
66. Jukes T.H. and Cantor C.R. (1969) Academic Press, 21-132.
67. Sinma K., Nurak T. and Khucharoenphaisan K. (2015) KMITL Science and Technology Journal, 15(2), 88-97.
68. Trujillo M.E., Riesco R., Benito P. and Carro L. (2015) Frontiers in Microbiology, 6, 1-15.
69. Wang B., Liu W., Liu X., Franks A.E., Teng Y. and Luo Y. (2017) Science of the Total Environment, 590-591, 297-303.
70. Narayana K.J., Peddikotla P., Palakodety S.J.K., Yenamandra V. and Muvva V. (2009) Journal of Biological Research, 11, 49-55.
71. Nimnoi P., Pongslip N. and Lumyong S. (2010) World Journal of Microbiology and Biotechnology, 26, 193-203.
72. Matsukawa E., Nakagawa Y., Iimura Y. and Hayakawa M. (2007) Actinomycetologica, 21, 32-39.
73. Glick B.R. (2012) Scientifica, 2012, 1-15.
74. Duca D., Lorv J., Patten C. L., Rose D. and Glick B.R. (2014) Antonie Van Leeuwenhoek, 136, 85-125.
75. Glick B.R. (1995) Canadian Journal of Microbiology, 41, 109-117.
76. Kruasuwan W. and Thamchaipenet A. (2016) Journal of Plant Growth Regulation, 35(4), 1-14.
77. Salcedo L.D.P., Prieto C. and Correa M.F. (2014) African Journal of Microbiology Research, 8(8), 734-742.
78. Chung H., Park M., Madhaiyan M., Seshadri S., Song J., Cho H. and Sa T. (2005) Soil Biology and Biochemistry, 37, 1970-1974.
79. Shen J., Yuan L., Zhang J., Li H., Bai Z., Chen X. and Zhang F. (2011) Plant Physiology, 156(3), 997-1005.
80. Gupta M., Kiran S., Gulati A., Singh B. and Tewari R. (2012) Microbiological Research, 167, 358-363.
81. Surapat W., Pukahuta C., Rattanachaikunsopon P., Aimi T. and Boonlue S. (2013) Chiang Mai Journal of Science, 40(1), 11-25.
82. Jog R., Nareshkumarand G. and Rajkumar S. (2016) Plant Growth Promoting Actinobacteria. Springer Singapore, 33-45.
83. Mirza B.S. and Rodrigues J.L.M. (2012) Applied and Environmental Microbiology, 78(16), 5542-5549.
84. Wongphatcharachai M., Staley C., Wang P., Moncada K.M., Sheaffer C.C. and Sadowsky M.J. (2015) J. of Applied Microbiology, 118(5), 1152-1164.
85. Jin H., Yang X.Y., Yan Z.Q., Liu Q., Li X.Z., Chen J.X. and Qin B. (2014) Systematic and Applied Microbiology, 37(5), 376-385.
86. Souza R., Ambrosini A. and Passaglia L.M.P. (2015) Genetics and Molecular Biology, 38(4), 401-419.
87. Sellstedt A. and Richau K.H. (2013) FEMS Microbiology Letters, 342(2), 179-186.
88. Zakhia F., Jeder H., Willems A., Gillis M., Dreyfus B. and Lajudie P. (2006) Microbial Ecology, 51(3), 375-393.
89. Valdes M., Perez N.O., Santos P.E., Caballero-Mellado J., Pena-Cabriales J.J., Normand P. and Hirsch A.M. (2005) Applied and Environmental Microbiology, 71, 460-466.
90. Pankratov T.A. and Dedysh S.N. (2009) Microbiology, 78, 227-233.
91. Gtari M., Ghodhbane-Gtari F., Nouioui I., Beauchemin N. and Tisa L. S. (2012) Archives in Microbiology, 194(1), 3-11.
92. Baldani J.I., Reis V. M., Videira S.S., Boddey L.H. and Baldani V.L.D. (2014) Plant and Soil, 384(2), 413-431.
93. Wan M., Li G., Zhang J., Jiang D. and Huang H.C. (2008) Biological Control, 46, 552-559.
94. Li Q., Ning P., Zheng L., Huang J., Li G. and Hsiang T. (2012) Biological Control, 61, 113-120.
95. Damle N.R., Kulkarni S. (2014) Avishkar – Solapur University Research Journal, 3, 52-60.
96. Marques A.P.G.C., Pires C., Moreira H., Rangel A.O.S.S. and Castro P.M.L. (2010) Soil Biology and Biochemistry, 42(8), 1229-1235.
97. Babalola O.O. (2010) Biotechnology Letters, 32(11), 1559-1570.
98. Jog R., Nareshkumar G. and Rajkumar S. (2012) Journal of Applied Microbiology, 113(5), 1154-1164.
99. Mohanta Y.K. (2014) Bioengineering and Bioscience, 2(1), 1-5.
100. Sreevidya M., Gopalakrishnan S., Kudapa H. and Varshney R.K. (2016) Brazilian Journal of Microbiology, 47(1), 390-392.
101. Sathya A., Vijayabharathi R. and Gopalakrishnan S. (2017) 3 Biotech., 7(2), 1-10.
102. Getha K., Vikineswary S., Wong W.H., Seki T., Ward A. and Goodfellow M. (2005) Journal of Industrial Microbiology and Biotechnology, 32(1), 24–32.
103. Wang S., Liang Y., Shen T., Yang H. and Shen B. (2016) Biocontrol Science and Technology, 26(7), 951-963.
104. Lecomte C., Alabouvette C., Edel-Hermann V., Robert F. and Steinberg C. (2016) Biological Control, 101, 17-30.
105. Durrer A., Gumiere T., Taketani R.G., Costa D.P., Pereira e Silva M.C. and Andreote F.D. (2016) Applied Soil Ecology, 110, 12-20.
106. Pisa G., Magnani G.S., Weber H., Souza E.M., Faoro H., Monteiro R.A. and Cruz L.M. (2011) Brazilian Journal of Medical and Biological Research, 44(12), 1215-1221.
107. Franco-Correa M., Quintana A., Duque C., Suarez C., Rodríguez M.X. and Barea J.M. (2010) Applied Soil Ecology, 45, 209-217.
108. Gopalakrishnan S., Vadlamudi S., Bandikinda P., Sathya A., Vijayabharathi R., Rupela O., Kudapa H., Katta K. and Varshney R.K. (2014) Microbiological Research, 169, 40-48.
109. Gopalakrishnan S., Srinivas V., Alekhya G., Prakash B., Kudapa H., Rathore A. and Varshney R. K. (2015) Springerplus, 4, 31.