GENOME WIDE ANALYSIS OF INTERGENIC REGIONS IN MYCOPLASMA GENOMES FOR FUNCTIONAL CHARACTERIZATION: AN IN SILICO APPROACH

ANGAMUTHU KANDAVELMANI1*, JEGADEESAN RAMALINGAM2
1Department of Plant Molecular Biology and Bioinformatics, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, 641003, Tamil Nadu, India
2Department of Plant Molecular Biology and Bioinformatics, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, 641003, Tamil Nadu, India
* Corresponding Author : kandavelmani@gmail.com

Received : 06-04-2018     Accepted : 08-05-2018     Published : 30-05-2018
Volume : 10     Issue : 5       Pages : 1175 - 1182
Int J Microbiol Res 10.5 (2018):1175-1182
DOI : http://dx.doi.org/10.9735/0975-5276.10.5.1175-1182

Keywords : in silico, intergenic, minimal genome, concealed, coding potential
Conflict of Interest : None declared
Acknowledgements/Funding : Authors are thankful to Tamil Nadu Agricultural University, Coimbatore, 641003, Tamil Nadu, Coimbatore and DBT-BTIS facility provided by DBT, Govt. of India.
Author Contribution : Both author equally contributed

Cite - MLA : KANDAVELMANI, ANGAMUTHU and RAMALINGAM, JEGADEESAN "GENOME WIDE ANALYSIS OF INTERGENIC REGIONS IN MYCOPLASMA GENOMES FOR FUNCTIONAL CHARACTERIZATION: AN IN SILICO APPROACH ." International Journal of Microbiology Research 10.5 (2018):1175-1182. http://dx.doi.org/10.9735/0975-5276.10.5.1175-1182

Cite - APA : KANDAVELMANI, ANGAMUTHU, RAMALINGAM, JEGADEESAN (2018). GENOME WIDE ANALYSIS OF INTERGENIC REGIONS IN MYCOPLASMA GENOMES FOR FUNCTIONAL CHARACTERIZATION: AN IN SILICO APPROACH . International Journal of Microbiology Research, 10 (5), 1175-1182. http://dx.doi.org/10.9735/0975-5276.10.5.1175-1182

Cite - Chicago : KANDAVELMANI, ANGAMUTHU and JEGADEESAN, RAMALINGAM. "GENOME WIDE ANALYSIS OF INTERGENIC REGIONS IN MYCOPLASMA GENOMES FOR FUNCTIONAL CHARACTERIZATION: AN IN SILICO APPROACH ." International Journal of Microbiology Research 10, no. 5 (2018):1175-1182. http://dx.doi.org/10.9735/0975-5276.10.5.1175-1182

Copyright : © 2018, ANGAMUTHU KANDAVELMANI and JEGADEESAN RAMALINGAM, Published by Bioinfo Publications. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

Abstract

Advances in sequencing technology have unraveled the whole genome sequence of many Mycoplasma species which has provided a major milestone in the study of minimal genomes. During the course of analyzing the complete genomes of 11 Mycoplasma species, it was observed that around 7–17 % of these genome sequence lie in the intergenic space. A genome-wide analysis using in silico methods was carried out to explore the functional elements concealed in these intergenic sequences. A total of 6840 intergenic sequences were extracted from these 11 genomes and were subjected to a series of systematic analysis based on bioinformatics approach. An extensive analysis of all the 6840 intergenic sequences, markedly affirmed the protein coding potentials of 195 intergenic sequences. Of these 195 sequences, functional domains were predicted for 37 sequences from 8 Mycoplasma genomes. The outcome of the present study would facilitate a better understanding of the evolution, pathogenicity, drug resistance, virulence mechanism and development of novel antibiotics to combat Mycoplasma infections

References

1. Ubhe S.S., Rawat M., Verma S., Anamika K., Karmodiya K. (2017) BMC genomics, 18 (1), 656.
2. Plague G. R. (2010) Genome Biol Evol., 2, 584-590.
3. Fuli X., Wenlong Z., Xiao W., Jing Z., Baohai H., Zhengzheng Z., Bin-Guang M., Youguo L. (2017) Front Microbiol., 8, 1730.
4. Saito S., Kakeshita H., Nakamura K. (2009) Gene, 428 (1), 2-8.
5. Brent M.R., Guigo R. (2004) Curr Opin Struct Biol., 14 (3), 264-272.
6. Sridhar J., Sabarinathan R., Balan S.S., Rafi Z.A., Gunasekaran P., Sekar K. (2011) Genomics Proteomics Bioinformatics, 9 (4), 179-182.
7. Fu L.M. (2011) Heitor Lopes (Editor) Computational Biology and Applied Bioinformatics. InTech Open, ISBN: 978-953-307-629-4.
8. Panunzi L.G., Agüero F. (2014) PLoS neglected tropical diseases, 8 (5) e2839.
9. Ramírez A.S., Naylor C.J., Yavari C.A., Dare C.M., Bradbury J.M. (2011) Avian Pathol., 40 (1), 79-86.
10. Rogozin I.B., Makarova K.S., Natale D.A., Spiridonov A.N., Tatusov R.L., Wolf Y.I., Yin J., Koonin E.V. (2002) Nucleic Acids Res., 30, 4264 -4271.
11. Price M.N., Arkin A.P., Alm E.J. (2006) PLoS Genet., 2 (6), e96.
12. Razin S. (1992) FEMS Microbiol Lett., 100, 423 – 431.
13. Razin S., Yogev D., Naot Y. (1998) Microbiol Mol Biol Rev., 62 (4), 1094–1156.
14. Waites K.B., Talkington D.F. (2004) Clin. Microbiol. Rev., 17 697-728.
15. Waites K.B., Katz B., Schelonka R.L. (2005) Clin. Microbiol. Rev., 18, 757-789.
16. Cassell G.H., Waites K.B., Watson H.L., Crouse D.T., Harasawa R. (1993) Clin. Microbiol. Rev., 6, 69 -87.
17. Taylor-Robinson D., Furr P.M. (1998) Lancet, 351, 12-15.
18. Daxboeck F., Zitta S., Stadler M., Iro E., Krause R. (2005) J. Infect., 51, 54-58.
19. Patai K., Szilagyi G., Hubay M., Szentmariay I.F., Paulin F. (2005) J. Med. Microbiol., 54, 1249-50.
20. Witt A., Berger A., Gruber C.J., Petricevic L., Apfalter P., Worda C., Husslein P. (2005) Am J Obstet Gynecol., 193, 1663-1669.
21. Pararas M.V., Skevaki C.L., Kafetzis D.A. (2006) Eur J Clin Microbiol Infect Dis., 25 562-569.
22. Zdrodowska-Stefanow B., Kłosowska W.M., Ostaszewska-Puchalska I. , Bułhak- Kozioł V., Kotowicz B.(2006) Adv Med Sci., 51, 250-253.
23. Keane F.E., Thomas B.J., Gilroy C.B., Renton A., Taylor-Robinson D. (2000) Int J Std Aids, 11356-60.
24. Altschul S.F., Gish W., Miller W., Myers E.W., Lipman D.J. (1990) J.Mol.Biol., 215(3), 403–410.
25. Fettweis J.M., Serrano M.G., Huang B., Brooks J.P., Glascock A.L., Sheth N.U., Strauss J.F., Jefferson K.K., Buck G.A. (2014) PloS one, 9 (10), e110943.
26. Thoendel M., Jeraldo P., Greenwood-Quaintance K.E., Chia N., Abdel M.P., Steckelberg J.M., Osmon D.R., Patel R.(2017) Clin Infect Dis., 65 (2), 332-335.
27. Besemer J., Borodovsky M. (2005) Nucleic Acids Res., 33(suppl_2), W451–W454.
28. Lukashin A.V., Borodovsky M. (1998) Nucleic Acids Res., 26 4 1107–1115.
29. Kong L., Zhang Y., Ye Z.Q., Liu X.Q., Zhao S.Q., Wei L., Gao G. (2007) Nucleic Acids Res., 35(suppl_2), W345–W349.
30. Finn R.D., Coggill P., Eberhardt R.Y., Eddy S.R., Mistry J., Mitchell A.L., Potter S.C., Punta M., Qureshi M., Sangrador-Vegas A., Salazar G.A., Tate J., Bateman A. (2016) Nucleic Acids Res., 44, D1, D279-D285.
31. Johnson Z.I., Chisholm S.W. (2004) Genome Res., 14(11), 2268–2272.
32. Fukuda Y., Washio T., Tomita M. (1999) Nucleic Acids Res., 27(8), 1847-1853.
33. Razin S. (1999) Biosci Rep., 19(5), 367-372.
34. Chaudhry R., Varshney A.K., Malhotra P. (2007) Front Biosci., 12(1), 690-699.
35. Musatovova O., Herrera C., Baseman J.B. (2006) J. Clin. Microbiol., 44(2), 598-603.
36. Westberg J., Persson A., Holmberg A., Goesmann A., Lundeberg J., Johansson K.E., Pettersson B., Uhlen B.M. (2004) Genome Res., 14(2), 221–227.
37. Harasawa R., Pitcher D.G., Ramírez A.S., Bradbury J.M. (2004) Microbiology, 150(4), 1023-1029.
38. Fu L.M., Shinnick T.M. (2007) J Bioinform Syst Biol., 1, 277–284.
39. Sridhar J., Sambaturu N., Sabarinathan R., Ou H-Y, Deng Z., Sekar K., Rafi Z.A., Rajakumar K.(2010) PLoS One, 5(8), e11970.