MAP-BASED CLONING IN VEGETABLE CROPS: A REVIEW

MANISH KUMAR1*, MANPREET KAUR2
1Division of Vegetable Sciences, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
2Division of Vegetable Sciences, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
* Corresponding Author : imanishkumar91@gmail.com

Received : 16-03-2018     Accepted : 24-04-2018     Published : 30-04-2018
Volume : 10     Issue : 4       Pages : 394 - 400
Genetics 10.4 (2018):394-400
DOI : http://dx.doi.org/10.9735/0975-2862.10.4.394-400

Keywords : Map-based cloning, Fine mapping, Gene, Molecular marker, Vegetable
Conflict of Interest : None declared
Acknowledgements/Funding : Author thankful to ICAR-Indian Agricultural Research Institute, New Delhi, 110012
Author Contribution : All authors have equally contributed

Cite - MLA : KUMAR, MANISH and KAUR, MANPREET "MAP-BASED CLONING IN VEGETABLE CROPS: A REVIEW." International Journal of Genetics 10.4 (2018):394-400. http://dx.doi.org/10.9735/0975-2862.10.4.394-400

Cite - APA : KUMAR, MANISH, KAUR, MANPREET (2018). MAP-BASED CLONING IN VEGETABLE CROPS: A REVIEW. International Journal of Genetics, 10 (4), 394-400. http://dx.doi.org/10.9735/0975-2862.10.4.394-400

Cite - Chicago : KUMAR, MANISH and MANPREET, KAUR. "MAP-BASED CLONING IN VEGETABLE CROPS: A REVIEW." International Journal of Genetics 10, no. 4 (2018):394-400. http://dx.doi.org/10.9735/0975-2862.10.4.394-400

Copyright : © 2018, MANISH KUMAR and MANPREET KAUR, Published by Bioinfo Publications. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

Abstract

In the fast-changing world, the trend of vegetable consumption is increasing and molecular science has emerged unequivocally as the leading discipline for its genetic improvement. Cloning of genes governing important traits is one of the main objectives of molecular genetics. The map-based cloning approach has been applied in plant genetics to identify genes having a major effect on the phenotypic variations. Characterizing the causative allelic variation establishes the in vivo function of genes. The basic idea behind map-based cloning is to clone the gene based on knowing its chromosomal location. Map-based cloning or positional cloning refers to the process to recognize the underlying cause of variation in a mutant phenotype without prior assumptions or knowledge of specific genes. For this approach to be successful, a large number of polymorphic markers are required to delimit the gene within a sufficiently small genetic interval of less than 1 cM. Statistical association analyses between molecular polymorphisms of the candidate genes and variation in the trait of interest have also been carried out in a few studies. To validate the gene, physiological analyses, genetic transformation and/or sexual complementation experiments are practiced. A brief summary of fine mapped/cloned genes in vegetable crops is discussed here. The goal of this paper is to present an overview of map-based cloning analyses in plant genetics with special reference to vegetable crops

References

1. Anonymous (2003). Food and Agriculture Organization Database. http://www.fao.org.in
2. Anonymous (2013) Vegtable statistics, Indian Institute of Vegetable Research 2013.
3. Anonymous (2017) Indian Horticulture Database. http://www.nhb.gov.in
4. Jankowicz-Cieslak J. and Bradley J. (2015) Advances in Plant Breeding Strategies: Breeding, Biotechnology and Molecular Tools, 215-240.
5. Peters J. L., Cnudde F. and Gerats T. (2003) Trends in Plant Science, 8, 484-491.
6. Mayerhofer R., Wilde K., Mayerhofer M., Lydiate D., Bansal V. K., Good A. G. and Parkin I. A. (2005) Genetics, 171, 1977-1988.
7. Lukowitz W., Gillmor C. S., Scheible W. (2000) Plant Physiology, 123, 795-806.
8. Botstein D., White R. L. Skolnick M. and Davis R. W. (1980) American Journal of Human Genetics, 32, 314–331.
9. Williams J. G., Kubelik A. R., Livak K. J., Rafalski J. A. and Tingey S. V. (1990) Nucleic Acids Research, 18, 6531-6535.
10. Hearne C. M., Ghosh S. and Todd, J. A. (1992) Trends in Genetics, 8, 288-294.
11. Zabeau M. and Vos P. (1993) European Patent Application Number 92402629.7. Publication Number 0534858 A1.
12. Ganal M. W., Nevin D., Young N. D., Tanksley S. D. (1989) Molecular and General Genetics, 215, 395-400.
13. Rommens J. M., Iannuzzi M. C., Kerem B., Drumm M. L., Melmer G., Dean M., Rozmahel R., Cole J. L., Kennedy D. and Hidaka N. (1989) Science, 245, 1059-1065.
14. Rosenberg M., Przybylska M., Straus D. (1994) Proceedings of the National Academy of Sciences of the United States of America, 91, 6113-6117.
15. Rafalski A. (2002) Current Opinion in Plant Biology, 5, 94–100.
16. Giraudat J., Hauge B. M., Valon C., Smalle J., Parcy F. and Goodman H. M. (1992) The Plant Cell, 4, 1251-1261.
17. Arondel V., Lemieux B., Hwang I., Gibson S., Goodman H. M. and Somerville C. R. (1992) Science, 258, 1353-1355.
18. Martin G. B., Brommonschenkel S. H., Chunwongse J., Frary A., Ganal M. W., Spivey R., Wu T., Earle E. D. and Tanksley S. D. (1993) Science, 262, 1432-1436.
19. Kawchuk L. M., Hachey J. and Lynch D. R. (1998) Genome, 41, 91-95.
20. Oldroyd G. E. and Staskawicz B. J. (1998) Proceedings of the National Academy of Sciences, 95, 10300-10305.
21. Brommonschenkel S. H. and Tanksley S. D. (1997) Molecular and General Genetics, 256, 121-126.
22. Pnueli L., Carmel-Goren L., Hareven D., Gutfinger T., Alvarez J., Ganal M., Zamir D. and Lifschitz E. (1998) Development, 125, 1979-1989.
23. Carmel-Goren L., Liu Y. S., Lifschitz E. and Zamir D. (2003) Plant Molecular Biology, 52, 1215-1222.
24. Mao L., Begum D., Chuang H. W., Budiman M. A., Szymkowiak E. J., Irish E. E. and Wing R. A. (2000) Nature, 406, 910-913.
25. Remington D. L., Ungerer M. C. and Purugganan M. D. (2001). Genetics Research, 78, 213-218.
26. Foolad M. R. (2007) International Journal of Plant Genomics, 2007, 1-52.
27. Frary A., Nesbitt T. C., Grandillo S., Knaap E., Cong B., Liu J., Meller J., Elber R., Alpert K. B. and Tanksley S. D. (2000) Science, 289, 85-8.
28. Cong B., Liu J. and Tanksley S. D. (2002) Proceedings of the National Academy of Sciences, 99, 13606-13611.
29. Liu J., Cong B. and Tanksley S. D. (2003) Plant Physiology, 132, 292–299.
30. Tai T. H., Dahlbeck D., Clark E. T., Gajiwala P., Pasion R., Whalen M. C., Stall R.E. and Staskawicz B. J. (1999) Proceedings of the National Academy of Sciences, 96, 14153-14158.
31. Jo Y. D., Ha Y., Lee J. H., Park M., Bergsma A. C., Choi H. I., Goritschnig S., Kloosterman B., van Dijk P.J., Choi D. and Kang B. C. (2016) Theoretical and Applied Genetics, 129, 2003-2017.
32. Kim H. J., Han J. H., Kwon J. K., Park M., Kim B. D. and Choi D. (2010) Theoretical and Applied Genetics, 120, 1099-1106.
33. Rao G. U. and Paran I. (2003) Plant Molecular Biology, 51, 135-141.
34. Lefebvre V., Kuntz, M., Camara, B. and Palloix, A. (1998) Plant Mol Biol., 36(5), 785-789.
35. Thorup T. A., Tanyolac B., Livingstone K. D., Popovsky S., Paran I. and Jahn M. (2000) Proceedings of the National Academy of Sciences, 97, 11192-11197.
36. Huh J. H., Kang B. C., Nahm S. H., Kim S., Ha K. S., Lee M. H. and Kim B. D. (2001) Theoretical and Applied Genetics, 102, 524-530.
37. Stewart C., Kang B.C., Liu K., Mazourek M., Moore S.L., Yoo E.Y., Kim B.D., Paran I. and Jahn M.M. (2005) The Plant Journal, 42, 675-688.
38. Ruffel S., Dussault M. H., Palloix A., Moury B., Bendahmane A., Robaglia C. and Caranta C. (2002) The Plant Journal, 32, 1067–1075.
39. Kang B. C., Yeam I., Frantz J. D., Murphy J. F. and Jahn M. M. (2005) The Plant Journal, 42, 392–405.
40. Lu S., Van Eck J., Zhou X., Lopez A. B., O'Halloran D. M., Cosman K. M., Conlin B. J., Paolillo D. J., Garvin D. F., Vrebalov J. and Kochian L. V. (2006) The Plant Cell, 18, 3594-3605.
41. Shimizu M., Fujimoto R., Ying H., Pu Z. J., Ebe Y., Kawanabe T., Saeki N., Taylor J. M., Kaji M., Dennis E. S. and Okazaki K. (2014) Plant Molecular Biology, 85, 247-257.
42. Shimizu M., Pu Z. J., Kawanabe T., Kitashiba H., Matsumoto S., Ebe, Y., Sano M., Funaki T., Fukai E., Fujimoto R. and Okazaki K. (2015) Theoretical and Applied Genetics, 128, 119-130.
43. Liang J., Ma Y., Wu J., Cheng F., Liu B. and Wang X. (2017) Theoretical and Applied Genetics, 130, 71-79.
44. Imai R., Koizuka N., Fujimoto H., Hayakawa T., Sakai T. and Imamura J. (2003) Molecular Genetics and Genomics, 269, 388-394.
45. Brown G. G., Formanova N., Jin H., Wargachuk R., Dendy C., Patil P., Laforest M., Zhang J., Cheung W. Y. and Landry B. S. (2003) The Plant Journal, 35, 262-272.
46. Desloire S., Gherbi H., Laloui W., Marhadour S., Clouet V., Cattolico L., Falentin C., Giancola S., Renard M., Budar F. and Small I. (2003) EMBO Reports, 4, 588-594.
47. Giancola S., Marhadour S., Desloire S., Clouet V., Falentin-Guyomarch H., Laloui W., Falentin C., Pelletier G., Renard M., Bendahmane A. and Delourme R. (2003) Theoretical and Applied Genetics, 107, 1442-1451.
48. Cai D., Kleine M., Kifle S., Harloff H. J., Sandal N. N., Marcker K. A., Klein-Lankhorst R. M., Salentijn E. M., Lange W., Stiekema W. J. and Wyss U. (1997) Science, 275, 832-834.
49. Guo C., Yang X., Wang Y., Nie J., Yang Y., Sun J., Du H., Zhu W., Pan J., Chen Y., Lv D., He H., Lian H., Pan J. and Cai R. (2018) Theoretical and Applied Genetics, 131, 1-12.
50. Liu H., Jiao J., Liang X., Liu J., Meng H., Chen S., Li Y. and Cheng Z. (2016) Theoretical and Applied Genetics, 129, 1247-1256.
51. Joobeur T., King J. J., Nolin S. J., Thomas C. E. and Dean R. A. (2004) The Plant Journal, 39, 283-297.
52. Pauquet J., Burget E., Hagen L., Chovelon V., Le Menn A., Valot N., Desloire S., Caboche M., Rousselle P., Pitrat M. and Bendahmane A. (2004) Proceedings of Cucurbitaceae, 325-329.
53. Morales M., Orjeda G., Nieto C., van Leeuwen H., Monfort A., Charpentier M., Caboche M., Arus P., Puigdomènech P., Aranda M. A., Dogimont C., Bendahmane A. and Garcia-Mas J. (2005) Theoretical and Applied Genetics, 111, 914-922.
54. Garcia-Mas J., Morales M., van Leeuwen H., Monforte A.J. and Puigdomenech P. (2004) In: Progress in Cucurbit Genetics and Breeding Research, 209-212.
55. Ori N., Eshed Y., Paran I., Presting G., Aviv D., Tanksley S. D. Zamir D., Fluhr R. (1997) The Plant Cell, 9, 521-532.
56. Simons G., Groenendijk J., Wijbrandi J., Reijans M., Groenen J., Diergaarde P., Van der Lee T., Bleeker M., Onstenk J., de Both M. and Haring M. (1998) The Plant Cell, 10, 1055-1068.
57. Jones N., Ougham H., Thomas H. and Pasakinskiene I. (2009) New Phytologist, 183, 935-966.
58. Rossi M., Goggin F. L., Milligan S. B., Kaloshian I., Ullman D. E. and Williamson V. M. (1998) Proceedings of the National Academy of Sciences, 95, 9750-9754.
59. Vos P., Simons G., Jesse T., Wijbrandi J., Heinen L., Hogers R., Frijters A., Groenendijk J., Diergaarde P., Reijans M. and Fierens-Onstenk J. (1998) Nature Biotechnology, 16, 1365-1369.
60. Milligan S. B., Bodeau J., Yaghoobi J., Kaloshian I., Zabel P. and Williamson V. M. (1998) The Plant Cell, 10, 1307-1319.
61. Bogdanove A. J. (2002) Molecular Plant Pathology, 3, 283–288.
62. Gu Y. Q. and Martin G. B. (1998) In: Philosophical Transactions of the Royal Society, Biological Sciences, 353, 1455-1461.
63. Dixon M. S., Jones D. A., Keddie J. S., Thomas C. M., Harrison K. and Jones J. D. (1996) Cell, 84, 451-459.
64. Jo K. R., Arens M., Kim T. Y., Jongsma M. A., Visser R. G., Jacobsen E. and Vossen J. H. (2011) Theoretical and Applied Genetics, 123, 1331-1340.
65. Huang Z., Peng G., Liu X., Deora A., Falk K. C., Gossen B. D., McDonald M. R. and Yu F. (2017) Frontiers in Plant Science, 8, 1448.
66. Venkatesh J., An J., Kang W. H., Jahn M. and Kang B. C. (2018) Phytopathology, 108, 142-148.
67. Jo J., Venkatesh J., Han K., Lee H. Y., Choi G. J., Lee H. J., Choi D. and Kang B. C. (2017) Frontiers in Plant Science, 8, 1-11.
68. Liu L., Venkatesh J., Jo Y. D., Koeda S., Hosokawa M., Kang J. H., Goritschnig S. and Kang B. C. (2016) Theoretical and Applied Genetics, 129, 1541-1556.
69. Hurtado-Gonzales O. P., Valentini G., Gilio T. A., Martins A. M., Song Q. and Pastor-Corrales M. A. (2017) G3: Genes, Genomes, Genetics, 7, 557-569.
70. Keller B., Manzanares C., Jara C., Lobaton J. D., Studer B. and Raatz B. (2015) Theoretical and Applied Genetics, 128, 813-826.
71. Chen F., Fu B., Pan Y., Zhang C., Wen H., Weng Y., Chen P. and Li Y. (2017) Theoretical and Applied Genetics, 130, 1549-1558.
72. Ronen G., Cohen M., Zamir D. and J. Hirschberg J. (1999) The Plant Journal, 17, 341-351.
73. Ronen G., Carmel-Goren L., Zamir D. and Hirschberg J. (2000) Proceedings of the National Academy of Sciences of the United States of America, 97, 11102-11107.
74. Isaacson T., Ronen G., Zamir D. and Hirschberg J. (2002) The Plant Cell, 14, 333-342.
75. Yen H.C., Lee S., Tanksley S. D., Lanahan M. B., Klee H. J. and Giovannoni J. J. (1995) Plant Physiology, 107, 1343-1353.
76. Moore S., Vrebalov J., Payton P. and Giovannoni J. (2002) Journal of Experimental Botany, 53, 2023-2030.
77. Giovannoni J. J., Noensie E.N., Ruezinsky D. M., Lu X., Tracy S. L., Ganal M. W., Martin G. B., Pillen K., Albert K. and Tankslev S. D. (1995) Molecular and General Genetics, 248, 195-206.
78. Vrebalov J., Ruezinsky D., Padmanabhan V., White R., Medrano D., Drake R., Schuch W. and Giovannoni J. (2002) Science, 296, 343-346.
79. Ku H. M., Grandillo S. and Tanksley S. D. (2000) Theoretical and Applied Genetics, 101, 873-878.
80. Tanksley S. D. (2004) The Plant Cell, 16, S181-S189.
81. Van der Knaap E., Sanyal A., Jackson S.A. and Tanksley S. D. (2004) Genetics, 168, 2127-2140.
82. Fridman E., Liu Y., Carmel-Goren L., Gur A., Shoresh M., Pleban T., Eshed Y. and Zamir D. (2002) Molecular Genetics and Genomics, 266, 821-826.
83. Zhang H. B., Budiman M. A. and Wing R. A. (2000) Theoretical and Applied Genetics, 100, 1183-1189.
84. Budiman M. A., Chang S. B., Lee S., Yang T. J., Zhang H. B., De Jong H. and Wing R. A. (2004) Theoretical and Applied Genetics, 108, 190-196.
85. Li K., Yao Y., Xiao L., Zhao Z., Guo S., Fu Z. and Du D. (2018) Theoretical and Applied Genetics, 131, 193-208.
86. Li Y., Wen, C. and Weng Y. (2013) Theoretical and Applied Genetics, 126, 2187-2196.
87. Jie Z., Guoyi G., Shaogui G., Yi R., Haiying Z. And Yong X. (2014) Proceedings of Cucurbitaceae, pp.111.
88. Wang Y., Xiao L., Guo S., An F. and Du D. (2016) PloS one, 11, 0166464.
89. Chen F., Fu B., Pan Y., Zhang C., Wen H., Weng Y., Chen P. and Li Y. (2017) Theoretical and Applied Genetics, 130, 1549-1558.
90. Liu Z., Fang Z., Zhuang M., Zhang Y., Lv H., Liu Y., Li Z., Sun P., Tang J., Liu D. and Zhang Z. (2017) Frontiers in Plant Science, 8, 239.
91. Huang Z. and Van der Knaap E. (2011) Theoretical and Applied Genetics, 123, 465-474.
92. Miao H., Zhang S., Wang M., Wang Y., Weng Y. and Gu X. (2016) International journal of molecular sciences, 17, 1602.
93. Ling H.Q., Koch G., Bäumlein H. and Ganal M. W. (1999) Proceedings of the National Academy of Sciences of the United States of America, 96, 7098-7103.
94. Li, H., Zhu L., Yuan G., Heng S., Yi B., Ma C., Shen J., Tu J., Fu T. and Wen J. (2016) Molecular Genetics and Genomics, 291, 1523-1534.
95. Jeong K., Choi D. and Lee J. (2018) Theoretical and Applied Genetics, 131, 183-191.
96. Yi B., Chen Y., Lei S., Tu J. and Fu T. (2006) Theoretical and Applied Genetics, 113, 643-650.
97. Lei S., Yao X., Yi B., Chen W., Ma C., Tu J. and Fu T. (2007) Theoretical and Applied Genetics, 115, 643–651.
98. Huang Z., Chen Y., Yi B., Xiao L., Ma C., Tu J. and Fu T. (2007) Theoretical and Applied Genetics, 115, 113-118.
99. Koizuka N., Imai R., Fujimoto H., Hayakawa T., Kimura Y., Kohno‐Murase J., Sakai T., Kawasaki S. and Imamura J. (2003) The Plant Journal, 34, 407-415.
100. Rivers B. A., Bernatzky R., Robinson S. J. and Jahnen-Dechent W. (1993) Molecular Genetics and Genomics, 238, 419-427.
101. Salmeron J. M., Oldroyd G. E., Rommens C. M., Scofield S. R., Kim H. S., Lavelle D. T., Dahlbeck D. and Staskawicz B. J. (1996) Cell, 86, 123-133.