CULTURABLE ENDOPHYTIC BACTERIA FROM HALOTOLERANT Salvadora persica L.: SCREENING, ISOLATION AND PLANT GROWTH PROMOTING TRAITS

H. ABBAS1*, R.M. PATEL2
1Department of Plant Molecular Biology and Biotechnology, Navsari Agricultural University, Navsari, 396450, Gujarat, India
2ASPEE Shakilam Agricultural Biotechnology Institute, Athwa Farm, Surat, 395007, Navsari Agricultural University, Navsari, 396450, Gujarat, India
* Corresponding Author : haidarabbas429@gmail.com

Received : 07-03-2018     Accepted : 17-03-2018     Published : 30-03-2018
Volume : 10     Issue : 3       Pages : 1074 - 1077
Int J Microbiol Res 10.3 (2018):1074-1077
DOI : http://dx.doi.org/10.9735/0975-5276.10.3.1074-1077

Keywords : Salvadora persica, Halophyte, Endophyte, Plant growth promotion
Conflict of Interest : None declared
Acknowledgements/Funding : Author thankful to Navsari Agricultural University, Navsari, 396450, Gujarat
Author Contribution : All author equally contributed

Cite - MLA : ABBAS, H. and PATEL, R.M. "CULTURABLE ENDOPHYTIC BACTERIA FROM HALOTOLERANT Salvadora persica L.: SCREENING, ISOLATION AND PLANT GROWTH PROMOTING TRAITS." International Journal of Microbiology Research 10.3 (2018):1074-1077. http://dx.doi.org/10.9735/0975-5276.10.3.1074-1077

Cite - APA : ABBAS, H., PATEL, R.M. (2018). CULTURABLE ENDOPHYTIC BACTERIA FROM HALOTOLERANT Salvadora persica L.: SCREENING, ISOLATION AND PLANT GROWTH PROMOTING TRAITS. International Journal of Microbiology Research, 10 (3), 1074-1077. http://dx.doi.org/10.9735/0975-5276.10.3.1074-1077

Cite - Chicago : ABBAS, H. and R.M., PATEL. "CULTURABLE ENDOPHYTIC BACTERIA FROM HALOTOLERANT Salvadora persica L.: SCREENING, ISOLATION AND PLANT GROWTH PROMOTING TRAITS." International Journal of Microbiology Research 10, no. 3 (2018):1074-1077. http://dx.doi.org/10.9735/0975-5276.10.3.1074-1077

Copyright : © 2018, H. ABBAS and R.M. PATEL, Published by Bioinfo Publications. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

Abstract

Twenty three endophytic bacterial isolates were isolated from the roots of Salvadora persica L. were characterized on the basis of various criteria such as morphology and biochemical characteristics, out of which six potential endophytes were selected based on their PGPR activity and identified by 16S rRNA gene sequence analysis as Citrobacter sp. A6 (KY587407), Pantoea agglomerans A10 (KY587408), Pseudomonas oryzihabitans A16 (KY963571), Serratia marcescens A20 (KY963572) Enterobacter aerogenes A23 (KY963573) and Bacillus sp. A26 (KY963574). Only Citrobacter sp. A6 (KY587407), Pantoea agglomerans A10 (KY587408) were able to produce IAA. Siderophore production was observed in only Enterobacter aerogenes A23. All isolates solubilized tricalcium phosphate except Bacillus sp. A26 and ACC deaminase production were observed in Citrobacter sp. A6 and Bacillus sp. A26. All isolates could withstand higher salt level (7 % NaCl) whereas Serratia marcescens A20 tolerated up to 5 % of NaCl.

References

1. Sher H., Al-Yemeni M. N., Yahya S. M. and Arif H. S. (2010) J Med Plants Res, 4, 1209-1215.
2. Noumi E., Snoussi M., Hajlaoui H., Valentin E. and Bakhrouf A. (2010) Eur J Clin Microbiol Infect Dis, 29, 81-88.
3. Zodape S. T. and IndusekharV. K. (1997) J. Sci. Indust. Res., 56, 657-661
4. Almas K. (2002) J. Contemp. Dent. Pract., 3, 27-35.
5. Almas K. and Al-Zeid, Z. (2004) J. Contemp. Dent. Pract., 1, 105-114.
6. Darmani H., Nusary T. and Al-Hiyasat A. S. (2006) Int.Dent. Hygiene, 4, 62-66.
7. Chelli-Chentouf N., ATT Medddah C., Mullie A. andMeddah B. (2012) J. Ethnopharmacol., 144, 57-66.
8. Essaidi I., Brahmi Z., Snoussi A., Koubaier H. B. H., Casabianca H., Abe N. and Bouzouita N. (2013) Food Control, 32(1), 125-133.
9. Wilson D. (1995) Oikos, 73 (2), 274-276.
10. Bulgarelli D., Schlaeppi K., Spaepen S., Ver Loren van Themaat E. and Schulze-Lefert P. (2013) Annu. Rev. Plant Biol., 64, 807-838.
11. Lee S., Flores-ncarnacion M., Contreras-Zentella M., Garcia-Flores L., Escamilla J. E. and Kennedy C. (2004) J Bacteriol, 186,5384–5391.
12. Spaepen S., Vanderleyden J., and Remans R. (2007) Fems. Microbiol. Rev., 31, 425-448.
13. Wakelin S. (2004) Biol Fertil Soils, 40,36–43.
14. Compant S., Reiter B., Sessitsch A., Nowak J., Cle´ment C. and Ait Barka E. (2005) Appl Environ Microbiol, 71,1685–1693.
15. Sun J., Guo L., Zang W., Ping W. and Chi D. (2008) Science in China Series C, Life Sciences, 51(8), 751-759.
16. Kumar V., Kumar A., Pandey K. D., and Roy B. K. (2015) Annals of microbiology, 65(3), 1391-1399.
17. Bric J. M., Bostock R. M. and Silverstone S. E. (1991) Appl Environ Microbiol, 57(2),535–538.
18. Pikovskaya R. I. (1948) Microbiology, 17, 362–370.
19. Schwyn B. and Neilands J. B. (1987) Anal.Biochem., 160, 47-56.
20. Dworkin M. and Foster J. (1958) J. Bacteriol., 75, 592-601.
21. Pirhadi M., Enayatizamir N., Motamedi H. and Sorkheh K. (2016) Bioscience Biotechnology Research Communications, 9(3),530-538.
22. Arora S., Patel P. N., Vanza M. J. and Rao G.G. (2014) African Journal of Microbiology Research, 8(17),1779-1788.
23. Andreote F. D., Rossetto P. B., Souza L. C., Marcon J., Maccheroni W., Azevedo J. L. and AraujoW. L. (2008) Journal of basic microbiology, 48(5), 338.
24. Chen L., Luo S., Xiao X., Guo H., Chen J., Wan Y. and Liu C. (2010) Applied soil ecology, 46(3), 383-389.
25. Kumar A., Singh R., Yadav A., Giri D. D., Singh P. K. and Pandey K. D.(2016) Biotech, 6(1), 1-8.
26. Shi Y., Lou K. and Li C. (2009) Afr J Biotechnol, 8,835–840
27. Taghavi S., Garafola C., Monchy S., Newman L., Hoffman A., Weyens N. and van der Lelie D. (2009) Applied and Environmental Microbiology, 75(3), 748-757.
28. Woodward A. W. and Bartel B. (2005) Ann Bot (London), 95,707–735.
29. Xie H., Pasternak J. J. and Glick B. R. (1996) Current Microbiology, 32(2), 67-71.
30. Persello‐Cartieaux F., Nussaume L., and Robaglia C. (2003) Plant, Cell and Environment, 26(2), 189-199.
31. Karnwal A. (2009) J Plant Pathol, 91(1),61–63
32. Gardner R. A., Kinkade R., Wang C. and Phanstiel O. (2004) J Org Chem., 69,3530–3537.
33. Wilson M. K., Abergel R. J., Arceneaux J. E., Raymond K. N. and Byers B. R. (2010) Biometals, 23,129–134.
34. Tian F., Ding Y., Zhu H., Yao L. and Du B. (2009) Brazilian J Microbiol, 40, 276–284.
35. Khan M. S., Zaidi A. and Wani P. A. (2006) Agron Sustain Dev, 27,29–43.
36. Hallmann J., Quadt-Hallmann A., Mahaffee W. F. and Kloepper J. W. (1997a) Can J Microbiol, 43(10),895–914.
37. Hallmann J., Quadt-Hallmann A., Rodriguez-Kabana R. and Kloepper J. W. (1997b) Soil Biol Biochem 30, 925–937.
38. Lopez B. R., Bashan Y., and Bacilio M. (2011) Archives of microbiology, 193(7), 527-541.
39. Kumar V., Kumar A., Pandey K. D., and Roy B. K. (2015) Annals of microbiology, 65(3), 1391-1399.
40. Rashid S., Charles T. C. and Glick B. R. (2012) Applied soil ecology, 61, 217-224.
41. Singh R., Kumar A., Singh M. and Pandey K. D. (2013) Effect of salt stresson endophytic bacteria isolated from root of Momordica charantia. In, Indian Society of Vegetable Science, National Symposium on Abiotic and Biotic Stress Management inVegetable Crops.
42. Safronova V. I., Stepanok V. V., Engqvist G. L., Alekseyev Y. V. and Belimov A. A. (2006) Biology and Fertility of Soils, 42(3), 267-272.
43. Glick B. R., Todorovic B., Czarny J., Cheng Z., Duan J. and McConkey B. (2007) Critical Reviews in Plant Sciences, 26(5-6), 227-242.
44. Hardoim P. R., van Overbeek L. S. and van Elsas J. D. (2008) Trends Microbiol., 16,463–471.
45. Alizadeh O., Sharafzadeh S. and Firoozabadi A. H. (2012) Asian J Plant Sci., 11,1–8
46. Belimov A. A., Safronova V. I. and Mimura T. (2002) Canadian Journal of Microbiology, 48(3), 189-199.