Licence

ISSN & EISSN

ISSN: 0976-9900
EISSN:0976-9919

Journal Details

Subscribe Article

 

Share

Translate Article

Article Category

CrossMark

Article Statistics

HTML Views - 3252
PDF Downloads - 153
XML Downloads - 408

Downloads

Citations

Cited By

Cite

Import Cite

Share

Email Article
Print Article
Rights and permissions

Related Article

Google Scholar

PubMed

Journal of Ecology and Environmental Sciences


RANDOMLY MIXTURE OF WASTE PLASTICS CONVERSION INTO FUEL BY USING LEFTOVER RESIDUE

SARKER M.1*, RASHID M.M.2, RAHMAN M.S.3
1Natural State Research, Inc. Department of Research and Development, Stamford, CT 06902, USA.
2Natural State Research, Inc. Department of Research and Development, Stamford, CT 06902, USA.
3Natural State Research, Inc. Department of Research and Development, Stamford, CT 06902, USA.
* Corresponding Author : msarker@naturalstateresearch.com

Received : 25-07-2012     Accepted : 31-07-2014     Published : 07-08-2014
Volume : 5     Issue : 1       Pages : 124 - 132
J Ecol Environ Sci 5.1 (2014):124-132
Conflict of Interest : None declared

Cite - MLA : SARKER M., et al "RANDOMLY MIXTURE OF WASTE PLASTICS CONVERSION INTO FUEL BY USING LEFTOVER RESIDUE." Journal of Ecology and Environmental Sciences 5.1 (2014):124-132.

Cite - APA : SARKER M., RASHID M.M., RAHMAN M.S. (2014). RANDOMLY MIXTURE OF WASTE PLASTICS CONVERSION INTO FUEL BY USING LEFTOVER RESIDUE. Journal of Ecology and Environmental Sciences, 5 (1), 124-132.

Cite - Chicago : SARKER M., RASHID M.M., and RAHMAN M.S. "RANDOMLY MIXTURE OF WASTE PLASTICS CONVERSION INTO FUEL BY USING LEFTOVER RESIDUE." Journal of Ecology and Environmental Sciences 5, no. 1 (2014):124-132.

Copyright : © 2014, SARKER M., et al, Published by Bioinfo Publications. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

Abstract

Randomly mixture of waste plastics conversion into liquid hydrocarbon fuel with thermal degradation process utilized leftover different percentage of residue. Mixture waste plastics content was high density polyethylene (HDPE), low density polyethylene (LDPE), polypropylene (PP) and polystyrene (PS) and residue mixture content percentage was 5% and 10% for two different experiments under same parameter. Experimental processes were performed under laboratory fume hood without vacuum system and temperature range was used for each experiment 150-420ºC. In the laboratory scale process randomly mixture waste plastics sample was used for each experiment 1000 gm and added extra solid black residue percentage wise. Produced fuel was analyzed by Gas Chromatography and Mass Spectrometer (GC/MS) and obtained compound indicate that from randomly mixture waste plastics and extra 5% residue to fuel hydrocarbon range is C3H6 to C35H70 and 10% residue and randomly mixture waste plastics to fuel hydrocarbon compound range is C3H6 to C35H70. Produced fuel has aliphatic and aromatic group compounds and fuel could be use in the internal combustion engines, feed for feed stock refinery and electricity generation feed for power plants. Fuels sulfur content less than environmental protection agency (EPA) level.

References
Top

[1] Straka P., Buchtele J. & Kovarova J. (1998) Macromol. Symp., 135, 19-23.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[2] Yanik J., Uddin A., Ikeuchi K. & Sakata Y. (2001) Polym. Degrad. Stab., 73, 335-346.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[3] Taghiei M.M., Feng Z., Huggins F.E. & Huffman G.P. (1994) Energy Fuels, 8, 1228-1232.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[4] Domınguez A., Blanco C.G., Barriocanal C., Alvarez R. & Diez M.A. (2001) J. Chromatogr., A, 918, 135-144.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[5] Sharypov V.I., Beregovtsova N.G., Kuznetsov B.N., Membrado L., Cebolla V.L., Marin N. & Weber J.V. (2003) J. Anal. Appl. Pyrolysis, 67, 325-340.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[6] Ofosu-Asante K., Stock L.M. & Zabransky R.F. (1988) Fuel, 68, 567.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[7] Sinag A., Sungur M., Güllü M. & Canel M. (2006) Energy & Fuels, 20(5), 2093-2098.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[8] Ren T., Patel M. & Blok K. (2006) Energy J., 31, 425-451.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[9] Zdonik S.B. & Hayward G.L. (1975) Hydrocarbon Proc., 95-98.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[10] Becdelievre C. & Kaiser V. (1978) Oil Gas J., 3, 94-103.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[11] Hatch L.F. & Matar S. (1978) Hydrocarbon Process, 129-139.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[12] Depeyre D., Flicoteaux C., Arbabzadeh F. & Zabaniotou A. (1989) Ind. Eng. Chem. Res., 28, 967-976.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[13] Simon C.M., Kaminsky W. & Schlesselmann B.J. (1996) Anal. Appl. Pyrolysis, 38, 75-87.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[14] Idem R.O., Katikaneni S.P.R. & Bakhshi N.N. (1996) Energy Fuels, 10, 1150-1162.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[15] Nerın C., Domeno C., Moliner R., Lazaro M.J., Suelves I. & Valderrama J.J. (2000) Anal. Appl. Pyrolysis, 55, 171-183.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[16] Hajekova E., Mlynkova B., Bajus M. & Spodova L.J. (2007) Anal. Appl. Pyrolysis, 79, 196-204.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[17] Karimzadeh R., Ghashghaee M. & Nouri M. (2009) Energy & Fuels, 24(3), 1899-1907.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[18] Williams P.T. & Williams E.A.J. (1998) Inst. Energy, 71, 81-93.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[19] Williams P.T. & Williams E.A. (1999) Energy Fuels, 13, 188-196.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[20] Kaminsky W., Schmidt H. & Simon C.M. (2000) Macromol. Symp., 152, 191-199.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[21] Wey M.Y., Lo C.S., Wu S.Y. & Lee Y.T. (1998) Waste Manage. Res., 16, 72-82.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[22] Aguado J., Sotelo J.L., Serrano D.P., Calles J.A. & Escola J.M. (1997) Energy & Fuel, 11, 1125-1231.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[23] Garforth A., Fiddy S., Lin Y.H., Ghanbari-Siakhali A., Sharratt P.N. & Dwyer J. (1997) Thermochim. Acta., 294, 63-69.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[24] Marcilla A., Beltran M.I. & Conesa J.A.J. (2001) Anal. Appl. Pyrolysis, 58-59, 117-126.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus