PLANT GROWTH PROMOTION OF CHILLI (Capsicum annum L.) USING ACC DEAMINASE POSITIVE PGPR ISOLATES

M. SRINIVASA RAO1, B. SREEDEVI2, N. KISHORE3*
1Department of Microbiology, Palamuru University, Mahabubnagar, 509001, Telangana, India
2Department of Microbiology, Palamuru University, Mahabubnagar, 509001, Telangana, India
3Department of Microbiology, Palamuru University, Mahabubnagar, 509001, Telangana, India
* Corresponding Author : kishore_micro2003@yahoo.co.in

Received : 02-10-2023     Accepted : 27-10-2023     Published : 30-10-2023
Volume : 15     Issue : 4       Pages : 2025 - 2028
Int J Microbiol Res 15.4 (2023):2025-2028

Keywords : Capsicum annum, PGPR, ACC deaminase, Bacillus halotolerans, Enterobacter hormaechei
Academic Editor : Kumar D Shiva, Dr Nitin Govindprabhu Suradkar
Conflict of Interest : None declared
Acknowledgements/Funding : Authors are thankful to Department of Microbiology, Palamuru University, Mahabubnagar, 509001, Telangana, India
Author Contribution : All authors equally contributed

Cite - MLA : SRINIVASA RAO, M., et al "PLANT GROWTH PROMOTION OF CHILLI (Capsicum annum L.) USING ACC DEAMINASE POSITIVE PGPR ISOLATES." International Journal of Microbiology Research 15.4 (2023):2025-2028.

Cite - APA : SRINIVASA RAO, M., SREEDEVI, B., KISHORE, N. (2023). PLANT GROWTH PROMOTION OF CHILLI (Capsicum annum L.) USING ACC DEAMINASE POSITIVE PGPR ISOLATES. International Journal of Microbiology Research, 15 (4), 2025-2028.

Cite - Chicago : SRINIVASA RAO, M., B. SREEDEVI, and N. KISHORE. "PLANT GROWTH PROMOTION OF CHILLI (Capsicum annum L.) USING ACC DEAMINASE POSITIVE PGPR ISOLATES." International Journal of Microbiology Research 15, no. 4 (2023):2025-2028.

Copyright : © 2023, M. SRINIVASA RAO, et al, Published by Bioinfo Publications. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

Abstract

Use of plant growth promoting rhizobacteria (PGPR) is recently being studied for their ability to enhance growth of various plant species. Native bacteria with multiple PGPR attributes and ACC deaminase activity could be added advantage for making an isolate more potential PGPR. Five isolates with multiple PGPR traits and ACC deaminase activity were evaluated for their ability to show increase in plant growth. Results indicate that isolates IS-7 and IS-74 identified as Bacillus halotolerans (Accession No. OR593309) and Enterobacter hormaechei respectively were efficient compared to control plants and other isolates. Also, ability of these isolates in accumulation of total soluble sugars, proline and increased relative water content (RWC) of chilli indicate that they could be potential agents for alleviation of stress conditions

References

1. Mantri N., Patade V., Penna S., Ford R., and Pang E. (2012) Abiotic stress responses in plants: metabolism, productivity and sustainability, 1-19.
2. Van Loon L. C., Bakker P. A. H. M., and Pieterse C. M. J. (1998) Annual review of phytopathology, 36(1), 453-483.
3. Van Loon L. C. (2007) New perspectives and approaches in plant growth-promoting Rhizobacteria research, 243-254.
4. Penrose D. M. and Glick B. R. (2003) Physiologia plantarum, 118(1), 10-15.
5. Nadeem S. M., Ahmad M., Zahir Z. A., Javaid A., and Ashraf M. (2014) Biotechnology advances, 32(2), 429-448.
6. Wani S. P. and Gopalakrishnan S. (2019) Plant growth promoting rhizobacteria (PGPR): prospects for sustainable agriculture, 19-45.
7. Ben-David A. and Davidson C. E. (2014) Journal of microbiological methods, 107, 214-221.
8. Aneja K. R. (2007) Experiments in microbiology, plant pathology and biotechnology. New Age International.
9. Brick J. M., Bostock R. M. and Silversone S. E. (1991) Applied and Environmental Microbiology, 57, 535-538.
10. Alexander D. B. and Zuberer D. A. (1991) Biology and Fertility of Soils, 12, 39-45.
11. Pikovskaya R. I. (1948) Microbiology, 17, 362-37.
12. Premono M. E., Moawad A. M. and Vlek P. L. G. (1996) Indonesian Journal of Crop Science, 11,13-23.
13. Graham H. D. and Thomas L. B. (1961) Journal of Pharmaceutical Sciences, 50(1), 44-48.
14. Lorck H. (1948) Physiology Plantarum, 1, 142-146.
15. Glick B. R. (2004) Advances in applied microbiology, 56, 291-312.
16. Piromyou P., Buranabanyat B., Tantasawat P., Tittabutr P., Boonkerd N. and Teaumroong N. (2011) European Journal of Soil Biology, 47(1), 44-54.
17. Pérez-Patricio M., Camas-Anzueto J.L., Sanchez-Alegría A., Aguilar-González A., Gutiérrez-Miceli F., Escobar-Gómez E., Voisin Y., Rios-Rojas C., Grajales-Coutiño R. (2018) Sensors 18(2), 650.
18. González L. and González-Vilar M. (2001 Handbook of plant ecophysiology techniques (pp. 207-212). Dordrecht: Springer Netherlands.
19. Maness N. (2010) Plant stress tolerance: methods and protocols, 341-370.
20. Bates L. S., Waldren R. A. and Teare, I. D. (1973) Plant and soil, 39, 205-207.
21. Patten C. L. and Glick B. R. (1996) Canadian journal of microbiology, 42(3), 207-220.
22. Hyder S., Gondal A. S., Rizvi Z. F., Ahmad R., Alam M. M., Hannan, A., and Inam-ul-Haq M. (2020 Scientific reports, 10(1), 13859.
23. Raza A., Ejaz S., Saleem M. S., Hejnak V., Ahmad F., Ahmed M. A. and Zuan A. T. K. (2021) PLoS One, 16(12), e0261468.
24. Datta M., Palit R., Sengupta C., Pandit M. K. and Banerjee S. (2011) Australian Journal of Crop Science, 5(5), 531-536.
25. Thilagar G., Bagyaraj D. J., Podile A. R. and Vaikuntapu P. R. (2018) Proceedings of the National Academy of Sciences, India Section B: Biological Sciences, 88, 813-818
26. Gowtham H. G., Murali M., Singh S. B., Lakshmeesha T. R., Murthy K. N., Amruthesh K. N. and Niranjana S. R. (2018) Biological control, 126, 209-217.
27. Wu X., Fan Y., Wang R., Zhao Q., Ali Q., Wu H., Gu Q., Borriss R., Xie Y., and Gao X. (2022) Frontiers in Plant Science 13, 978066.
28. Ranawat B., Mishra S. and Singh A. (2021) Archives of microbiology 203, 2659-2667.