SURVIVABILITY STUDY OF PROBIOTICS DURING GASTROINTESTINAL TRANSIT AFTER MICROENCAPSULATION BY SPRAY DRYING

P.R. LIMBACHIYA1, J.H. KABARIYA2, V.M. RAMANI3*
1Dairy Microbiology Department, College of Dairy Science, Amreli, 365601, Kamdhenu University, Gandhinagar, 382010, India
2Dairy Microbiology Department, College of Dairy Science, Amreli, 365601, Kamdhenu University, Gandhinagar, 382010, India
3Dairy Microbiology Department, College of Dairy Science, Amreli, 365601, Kamdhenu University, Gandhinagar, 382010, India
* Corresponding Author : vimalmramani@gmail.com

Received : 01-01-2023     Accepted : 28-01-2023     Published : 30-01-2023
Volume : 15     Issue : 1       Pages : 2005 - 2011
Int J Microbiol Res 15.1 (2023):2005-2011

Keywords : Microencapsulation, Probiotics, Spray Drying, Milk Proteins, Survivability
Academic Editor : Dr Mukundraj G. Rathod, V. C. Ingle, Reddypriya Pasupuleti, Dr Dibyajyoti Talukdar
Conflict of Interest : None declared
Acknowledgements/Funding : Authors are thankful to Dairy Microbiology Department, College of Dairy Science, Amreli, 365601, Kamdhenu University, Gandhinagar, 382010, India
Author Contribution : All authors equally contributed

Cite - MLA : LIMBACHIYA, P.R., et al "SURVIVABILITY STUDY OF PROBIOTICS DURING GASTROINTESTINAL TRANSIT AFTER MICROENCAPSULATION BY SPRAY DRYING." International Journal of Microbiology Research 15.1 (2023):2005-2011.

Cite - APA : LIMBACHIYA, P.R., KABARIYA, J.H., RAMANI, V.M. (2023). SURVIVABILITY STUDY OF PROBIOTICS DURING GASTROINTESTINAL TRANSIT AFTER MICROENCAPSULATION BY SPRAY DRYING. International Journal of Microbiology Research, 15 (1), 2005-2011.

Cite - Chicago : LIMBACHIYA, P.R., J.H. KABARIYA, and V.M. RAMANI. "SURVIVABILITY STUDY OF PROBIOTICS DURING GASTROINTESTINAL TRANSIT AFTER MICROENCAPSULATION BY SPRAY DRYING." International Journal of Microbiology Research 15, no. 1 (2023):2005-2011.

Copyright : © 2023, P.R. LIMBACHIYA, et al, Published by Bioinfo Publications. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

Abstract

Now a day’s fortified foods with probiotics are more attractive due to their health benefits in human beings. Microencapsulation technique is a process to entrap a substance in a suitable material in order to generate particles with diameters of a few micrometers. The method of microencapsulation and concentration of coating material have a significant impact on the probiotic survivability and size of powder particle obtained. Milk protein (casein) used as coating material with spray drying process gave minimum powder particle size 347.7 d.nm (6% casein) in addition to obtain maximum survivability of 61.28% with 8% casein after 12 h exposure to gastric juice at pH 3.0 and in simulated bile salts at 1.0% with survivability of 85.64% (6% casein) in in vitro condition. The microencapsulated powders containing L. fermentum MTCC 8711 were stored at refrigerator (4°C) and room temperature (37°C) up to 30 days. The survivability of L. fermentum MTCC 8711 was found better at 4°C storage conditions which indicate that microencapsulated powder can be stored at refrigerated condition up to 20 days and storage up to 10 days at 37°C. However, they were remained in the level of recommendation probiotic cell population of 8.8×10? (4°C) & 4.7×10? (37°C) cfu/g at the end of 30 days, which was recommended for probiotic formulations

References

1. FAO/WHO- Food and Agriculture Organization of the United Nations and World Health Organization (2002) Guidelines for the evaluation of probiotics in food.
2. Kailasapathy K. and Chin J. (2000) Immuno Cell Biology, 78(1), 80-88.
3. Sanz Y. (2007) International Dairy Journal, 17(11), 1284-1289.
4. Sanders M.E. (1998) British Journal of Nutrition, 80(S2), 213-218.
5. Burgain J., Gaiani C., Linder M. and Scher J. (2011) Journal of Food Engineering, 104(4), 467-483.
6. Kailasapathy K. and Sureeta S. (2004) Australian Journal of Dairy Technology, 59(3), 204-208.
7. Solanki H.K., Pawar D.D., Shah D.A., Prajapati V.D., Jani G.K., Mulla A.M. and Thakar P.M. (2013) BioMed Research International, 1-21.
8. Iravani S., Korbekandi H. and Mirmohammadi S. (2015) Journal of Food Science and Technology, 52(8), 4679-4696.
9. Jayashree S., Karthikeyan R., Nithyalakshmi S., Ranjani J., Gunasekaran P. and RajendhranJ. (2018) Frontiers in Microbiology, 9, 411.
10. PanickerA. S., AliS. A., AnandS., PanjagariN. R., KumarS., MohantyA. K. and BehareP. V. (2018) Journal of Food Science and Technology, 55(7), 2801-2807.
11. ThakurK., TomarS. K. and DeS. (2016) Microbial Biotechnology, 9(4), 441-451.
12. Iyer C. and Kailasapathy K. (2005) Journal of Food Science, 70(1), 18-23.
13. Sarkar S. (2010) British Food Journal, 112(4), 329-349.
14. Sultana K., Godward G., Reynolds N., Arumugaswamy R., Peiris P. and Kailasapathy K. (2000) International Journal of Food Microbiology, 62(1-2), 47-55.
15. Mahdavi S.A., Jafari S.M., Ghorbani M. and Assadpoor E. (2014) Drying Technology, 32(5), 509-518.
16. Desai H. and Park H. (2005) Drying Technology, 23(7), 1361-1394.
17. Muthukumarasamy P., Allan-Wojtas P. and Holley R. (2006) Journal of Food Science, 71(1), 20-24.
18. Shah N.P. and Ravula R.R. (2000) Australian Journal of Dairy Technology, 55(3), 139.
19. Sunohara H., Ohno T., Shibata N. and Seki K. (1995) U.S. Patent No. 5,478,570. Washington, DC: U.S. Patent and Trademark Office.
20. Adhikari K., Mustapha A., Grun I. and Fernando L. (2000) Journal of Dairy Science, 83, 1946-1951.
21. Lee K.Y. and Heo T.R. (2000) Applied and Environmental Microbiology, 66(2), 869-873.
22. Mortazavian A., Razavi S.H., Ehsani M.R. and Sohrabvandi S. (2007) Iranian Journal of Biotechnology, 5(1), 1-18.
23. Desobry S.A., Netto F.M. and Labuza T.P. (1997) Journal of Food Science, 62(6), 1158-1162.
24. Kemp I.C., Robert W., Thoralf H., Ugo C., Yoong S., Lee G., Kim F. and Francois R. (2013) Drying Technology, 31(8), 930-941.
25. Anal A.K. and Singh H. (2007) Trends in Food Science & Technology, 18(5), 240-251.
26. Rokka S. and Rantamäki P. (2010) European Food Research and Technology, 231(1), 1-12.
27. Nazzaro F., Orlando P., Fratianni F. and Coppola R. (2012) Current Opinion in Biotechnology, 23(2), 182-186.
28. Landy P., DruauxC. and VoilleyA. (1995) Food Chemistry, 54(4), 387-392.
29. Chen L., Remondetto G. and Subirade M. (2006) Trends in Food Science & Technology, 17(5), 272-283.
30. Oliveira A.C., Moretti T.S., Boschini C., Baliero J.C., Freitas O. and Favaro-Trindade C.S. (2007) Journal of Microencapsulation, 24(7), 673-681.
31. Rosenberg M. and Young S. I. (1993) Food Structure, 12, 31-41.
32. Ross R. P., Desmond C., Fitzgerald G. F. and Stanton C. (2005) Journal of Applied Microbiology, 98(6), 1410-1417.
33. Krasaekoopt W., Bhandari B. and Deeth H. (2004) International Dairy Journal, 14(8), 737-743.
34. IDF (1993) Dried milk and dried cream. Belgium: International Dairy Federation.
35. Sheu T.Y. and Rosenberg M. (1998) Journal of Food Science, 63(3), 491-494.
36. Thummar A. and Ramani V. (2016) International Journal of Food and Fermentation, 5(1), 17-26.
37. Dimitrellou D., Kandylis P., Petrovi T., Dimitrijevi Brankovi S., Levi S., Nedovi V. and Kourkoutas Y. (2016) LWT-Food Science and Technology, 71, 169-174.
38. Reyes V., Chotiko A., Chouljenko A. and Sathivel S. (2018) Lwt, 96, 642-647.
39. Manojlovi Nedovi V.A., Kailasapathy K. and Zuidam N.J. (2010) Encapsulation of probiotics for use in food products. In N. J. Zuidam & V. A. Nedovic (Eds.), Encapsulation Technologies for Active Food Ingredients and Food Processing, 269-302.
40. Fazilah N.F., Hamidon N.H., Ariff A.B., Khayat M.E., Wasoh H. and Halim M. (2019) Molecules, 24(7), 1422.
41. Rajam R., Karthik P., Parthasarathi S., Joseph G.S. and Anandharamakrishnan C. (2012) Journal of Functional Foods, 4(4), 891-898.