TRACKING OF GENETIC DIVERSITY, EVOLUTIONARY DYNAMICS AND ANALYSING THE DIFFERENTIAL SELECTION PRESSURE ACTING UPON DENGUE SEROTYPE 1 AND 3 IN A HYPERENDEMIC AREA OF EASTERN INDIA

SAPTAMITA GOSWAMI1, RINKU CHAKRABORTI2, APARNA CHOWDHURY3, MEHEBUBAR RAHMAN4*, SRIMA ADHIKARI5, BISHAL GUPTA6, SAIANTANI MONDAL7, BHASWATI BANDYOPADHYAY8
1Department of Topical Medicine, School of Tropical Medicine, 108, C.R. Avenue, Kolkata, 700073, West Bengal, India
2Department of Topical Medicine, School of Tropical Medicine, 108, C.R. Avenue, Kolkata, 700073, West Bengal, India
3Department of Topical Medicine, School of Tropical Medicine, 108, C.R. Avenue, Kolkata, 700073, West Bengal, India
4Department of Topical Medicine, School of Tropical Medicine, 108, C.R. Avenue, Kolkata, 700073, West Bengal, India
5Department of Topical Medicine, School of Tropical Medicine, 108, C.R. Avenue, Kolkata, 700073, West Bengal, India
6Department of Topical Medicine, School of Tropical Medicine, 108, C.R. Avenue, Kolkata, 700073, West Bengal, India
7Department of Topical Medicine, School of Tropical Medicine, 108, C.R. Avenue, Kolkata, 700073, West Bengal, India
8Department of Topical Medicine, School of Tropical Medicine, 108, C.R. Avenue, Kolkata, 700073, West Bengal, India
* Corresponding Author : rmehbub@gmail.com

Received : 01-09-2021     Accepted : 27-09-2021     Published : 30-09-2021
Volume : 13     Issue : 4       Pages : 1953 - 1962
Int J Microbiol Res 13.4 (2021):1953-1962

Keywords : DENV1, DENV3, MCC tree, Substitution rate
Conflict of Interest : None declared
Acknowledgements/Funding : Authors are thankful to The Department of Biotechnology (DBT), Government of India (grant number BT/PR8597/MED/29/764/2013). The authors are thankful to Dr Arup Banerjee from Translational Health Science and Technology Institute (THSTI), Faridabad, India for the valuable pieces of advice for the smooth continuation of this study. The authors are thankful to Department of Topical Medicine, School of Tropical Medicine, 108, C.R. Avenue, Kolkata, 700073, West Bengal, India
Author Contribution : All authors equally contributed

Cite - MLA : GOSWAMI, SAPTAMITA, et al "TRACKING OF GENETIC DIVERSITY, EVOLUTIONARY DYNAMICS AND ANALYSING THE DIFFERENTIAL SELECTION PRESSURE ACTING UPON DENGUE SEROTYPE 1 AND 3 IN A HYPERENDEMIC AREA OF EASTERN INDIA." International Journal of Microbiology Research 13.4 (2021):1953-1962.

Cite - APA : GOSWAMI, SAPTAMITA, CHAKRABORTI, RINKU, CHOWDHURY, APARNA, RAHMAN, MEHEBUBAR, ADHIKARI, SRIMA, GUPTA, BISHAL, MONDAL, SAIANTANI, BANDYOPADHYAY, BHASWATI (2021). TRACKING OF GENETIC DIVERSITY, EVOLUTIONARY DYNAMICS AND ANALYSING THE DIFFERENTIAL SELECTION PRESSURE ACTING UPON DENGUE SEROTYPE 1 AND 3 IN A HYPERENDEMIC AREA OF EASTERN INDIA. International Journal of Microbiology Research, 13 (4), 1953-1962.

Cite - Chicago : GOSWAMI, SAPTAMITA, RINKU CHAKRABORTI, APARNA CHOWDHURY, MEHEBUBAR RAHMAN, SRIMA ADHIKARI, BISHAL GUPTA, SAIANTANI MONDAL, and BHASWATI BANDYOPADHYAY. "TRACKING OF GENETIC DIVERSITY, EVOLUTIONARY DYNAMICS AND ANALYSING THE DIFFERENTIAL SELECTION PRESSURE ACTING UPON DENGUE SEROTYPE 1 AND 3 IN A HYPERENDEMIC AREA OF EASTERN INDIA." International Journal of Microbiology Research 13, no. 4 (2021):1953-1962.

Copyright : © 2021, SAPTAMITA GOSWAMI, et al, Published by Bioinfo Publications. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

Abstract

Background: The burden of dengue infection in India has increased at an alarming rate as India accounts for third of global dengue infections. Kolkata is an endemic region for dengue infection. The present study describes the evolutionary analysis of dengue virus serotype 1 and 3 strains by analysing the C-prM-E region of circulating viruses in Kolkata. Methodology: C-prM-E region sequencing was performed in 7 DENV1 and 7 DENV3 strains from dengue hemorrhagic fever. MEGA software was used to develop the maximum likelihood tree. Bayesian phylogenetic analysis was done using the best fit model for each dataset. Selection pressure on structural genes was determined using the Datamonkey online platform. Result: 5 DENV1 strains grouped with American/African and 2 with Asian genotype. All DENV-3 strains were clustered with Genotype III. Mutations at the B and T cell epitopes were revealed. The nucleotide substitution rate of DENV1 was 7.42 ×10?4 substitutions/site/year and DENV3 was 7.19 ×10?4 substitutions/site/year. TMRCA of DENV1 and DENV3 viruses was estimated 132 years and 107 years respectively. Selection pressure analysis revealed that purifying negative selection was the main driving force acting on dengue virus evolution. Conclusion: The study on viral genetic diversity and evolutionary aspects will be useful for the continuous monitoring of disease burden, viral epidemiology as well as for the planning of proper prophylactic measures to control the spread of dengue infection. Several mutations at the antibody binding sites of the envelope region may help the virus to evade the host immune system

References

1. Bhatt S., Gething P.W., Brady O.J., et al. (2013) Nature, 496(7446), 504-507.
2. Holmes E.C., Twiddy S.S. (2003) Infect Genet Evol., 3(1), 19-28.
3. Weaver S.C., Vasilakis N. (2009) Infect Genet Evol., 9(4), 523–540.
4. Halstead S.B. (2007) Lancet, 370(9599), 1644–1652.
5. Banerjee A., Shukla S., Pandey A.D., et at. (2017) Transl Res., 186, 62-78.e9.
6. Pandey A.D., Goswami S., Shukla S., et al. (2017) J Infect., 75, 541-554.
7. Bandyopadhyay B., Bhattacharyya I., Adhikary S., et al. (2013) Hindawi Publishing Corporation, 207580, 5.
8. Goswami S., Rahman M., Chakraborti R., Karmakar J., Bhattacharya N., Bhaswati B. (2021) Inter J Contem Med Res., 8(1), A1-A9.
9. Huang J.H., Liao T.L., Chang S.F., et al. (2007) Am J Trop Med Hyg., 77, 903–909.
10. Shu P.Y., Su C.L., Liao T.L., et al. (2009) Am J Trop Med Hyg., 80(6), 1039–1046.
11. Tamura K., Peterson D., Peterson N., et al. (2011) Mol Bio. Evol., 28, 2731–2739.
12. Drummond A.J., Suchard M.A., Xie D., Rambaut A. (2012) Mol Biol Evol., 29(8), 1969–1973.
13. Darriba D., Taboada G.L., Doallo R., Posada D. (2012) Nature Methods, 9(8), 772.
14. Vaughan K., Greenbaum J., Blythe M., Peters B., Sette A. (2010) Viral Immunol., 23(3), 259–284.
15. Fibriansah G., Tan J.L., Smith S.A., et al. (2014) EMBO Mol Med., 6(3), 358-371.
16. Teoh E.P., Kukkaro P., Teo E.W., et al. (2012) Sci Transl Med., 4(139), 139ra83.
17. de Alwis R., Smith S.A., Olivarez N.P., et al. (2012) Proc Natl Acad Sci., 109(19), 7439-7444.
18. Gebhard L.G., Filomatori C.V., Gamarnik A.V. (2011) Viruses, 3(9), 1739–1756.
19. Sarkar A., Taraphdar D., Chatterjee S. (2012) J Trop Med., Article ID 960329, 5 pages.
20. Yergolkar P.N., Cherian S.S., Jadhav S., Raut C.G., Mourya D.T. (2017) Indian J Med Res., 146(5), 662-665.
21. Kukreti H., Dash P.K., Parida M., Chaudhary A., Saxena P., Rautela R.S., et al. (2009) Virol J., 6, 1.
22. Cecilia D., Patil J.A., Kakade M.B., et al. (2017) Virology, 510, 40-45.
23. Afreen N., Naqvi I.H., Broor S., Ahmed A., Parveen S. (2015) PLoS one, 10(11), e0141628.
24. Fibriansah G., Tan J.L., Smith S.A., et al. (2015) Nat Commun., 6, 6341.
25. Holmes Ed. (2010) Proceedings of the National Academy of Sciences, 107, 1742-1746.
26. Duffy S., Shackelton L.A., Holmes E.C. (2008) Nat Rev Genet., 9(4), 267-276.
27. Domingo-Calap P., Schubert B., Joly M., et al. (2018) PLoS Pathog., 14(10), e1007368.
28. Araújo J.M.G., Nogueira R.M.R., Schatzmayr H.G., Zanotto P.M.D., Bello G. (2009) Infect Genet Evol., 9(4), 716–725.
29. Modis Y., Ogata S., Clements D., Harrison S.C. (2003) Proc Natl Acad Sci., 100(12), 6986-6991.
30. Guardia C.L., Lleonart R. (2014) BioMed Res Int, Article ID 825039.