HETEROSIS ANALYSIS FOR YIELD CONTRIBUTING TRAITS AND FIBER QUALITY IN UPLAND COTTON (Gossypium hirsutum L.)

V.V. UJJAINKAR1*, V.D. PATIL2
1Department Agricultural Botany, College of Agriculture, Dr Panjabrao Deshmukh Krishi Vidyapeeth, Akola, 444 104, MS, India
2Ex. Dean, Faculty of Agriculture, Dr Panjabrao Deshmukh Krishi Vidyapeeth, Akola, 444 104, MS, India
* Corresponding Author : vvujjainkar@gmail.com

Received : 01-05-2021     Accepted : 26-05-2021     Published : 30-05-2021
Volume : 13     Issue : 5       Pages : 828 - 832
Genetics 13.5 (2021):828-832

Keywords : Cotton, Diallel, Heterosis, Heterobeltiosis and Upland Cotton
Conflict of Interest : None declared
Acknowledgements/Funding : Authors are thankful to research facilities and support provided by the Senior Research Scientist, (AICRP on Cotton), Cotton Research Unit and Department of Agricultural Botany, College of Agriculture, Dr Panjabrao Deshmukh Krishi Vidyapeeth, Akola, 444 104, Maharashtra, India
Author Contribution : All authors equally contributed

Cite - MLA : UJJAINKAR, V.V. and PATIL, V.D. "HETEROSIS ANALYSIS FOR YIELD CONTRIBUTING TRAITS AND FIBER QUALITY IN UPLAND COTTON (Gossypium hirsutum L.)." International Journal of Genetics 13.5 (2021):828-832.

Cite - APA : UJJAINKAR, V.V., PATIL, V.D. (2021). HETEROSIS ANALYSIS FOR YIELD CONTRIBUTING TRAITS AND FIBER QUALITY IN UPLAND COTTON (Gossypium hirsutum L.). International Journal of Genetics, 13 (5), 828-832.

Cite - Chicago : UJJAINKAR, V.V. and V.D., PATIL. "HETEROSIS ANALYSIS FOR YIELD CONTRIBUTING TRAITS AND FIBER QUALITY IN UPLAND COTTON (Gossypium hirsutum L.)." International Journal of Genetics 13, no. 5 (2021):828-832.

Copyright : © 2021, V.V. UJJAINKAR and V.D. PATIL, Published by Bioinfo Publications. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

Abstract

Amongst the fibres, Cotton is under cultivation from ancient period as a source of a fibre in India. Development of superior varieties and exploitation of phenomenon of heterosis are the main breeding approaches followed for developing high yielding varieties in respect to cotton. The field trials with fifty five genotypes (10 parents and 45 crosses) along with local released hybrid as a check PKV Hy–2 in two sets of environmental conditions were conducted using Completely Randomized Block Design (CRBD) on farm of University Department of Agricultural Botany, Dr PDKV, Akola (MS) as per procedure for Diallel analysis given by Griffings, 1956. The heterosis is the genetic expression of the beneficial effects of hybridization and specifically in cotton, the hybrid vigour is a target for all most all cotton breeders. The data were recorded for all the fourteen morphological including fibre quality characters viz., days to 50 per cent flowering, plant height (cm), number of monopodia per plant, number of sympodia per plant, number of bolls per plant, boll weight (g), number of seeds per boll, ginning outturn (%), seed index (g), lint index (%), 2.5 per cent span length (mm), fibre strength (g/tex), micronaire value (?g/inch) and seed cotton yield per plant (g). The maximum estimates of heterosis and heterobeltiosis for seed cotton yield per plant was observed in JLH–1594 x AKH–24 (74.21 and 58.67 per cent) followed by KH–118 x AKH–62 (73.06 and 54.03 per cent) over environments, whereas KH–118 x AKH–62 surpassed among all the forty five crosses for useful heterosis (22.84 per cent) over the locally adapted upland cotton hybrid PKV Hy–2

References

1. Allard R.W. (1960) Principles of plant breeding. John Willey and Sons., Inc., New York.
2. Aminul Islam A.K.M., Era F.M., Khalequzzaman, Uddin M. F. and Chakrabarty S. (2021) Journal of Advanced Plant Sciences, 11(1), 1-12.
3. Anonymous (2011) Biology of Gossypium spp. (Cotton) in Series of Crop Specific Biology Documents., Department of Biotechnology. Ministry of Science and Technology and Ministry of Environment and Science. Govt. of India, New Delhi 110003
4. Anonymous (2020) Annual Report 2020, AICRP on Cotton, ICAR-CICR., Coimbatore (TN)
5. Atale S.B. and Vitkare D.G. (1987) Annals of Plant Physiology, 1 (2), 208-215.
6. Bhatade S.S. (1982) Cotton Develop.,11 (4), 31-34.
7. Das L.D.V. and Shanmugavalli N. (1995) Madras Agric. J., 82 (2), 672-673.
8. El Debaby A.S., Kassem M.M., AwaadM.M., Hemaida G.M. (1997) Egyptian J. Agril. Res., 75 (3), 753-757.
9. Fryxell P.A. (1992) A revised taxonomic interpretation of Gossypium L. (Malvaceae.) Rheedea, 2,108-165
10. Gulati A.N. and Turner A. J. (1929) Journal of the Textile Institute, Transactions, 20, 1-9.
11. Katarki B.H. (1971) Indian Farm, 21,35-36.
12. Khadi B.M. and Kulkarni V.N. (2001) In: Chopra, V.L. Breeding Field Crops. Theory and Practice. Chapter 14. Oxford & IBH Publishing Co. Pvt. Ltd. Delhi and Calcutta. 531-575
13. Li Yue You, Wang XueDe and Wang X.D. (2002) Journal of Zhejiang University of Agriculture and Life science, 28(1), 7 -10.
14. Manimaran R. and Raveendran T.S. (20020 Advances in Plant Sciences,15(1), 255-259.
15. Nadre K.B., Shinde V.K. and Reddy V.G. (1984) J. Maharashtra agric. Univ., 9(1), 29-31.
16. Panse V.G. and Sukhatme P.V. (1967) Statistical method for agricultural workers, ICAR Publication, New Delhi.
17. Patel C.T. (1971) Cotton Development, 1(2), 1-6.
18. Pavasia M.J.,Shukla P.T. and Patel U.G. (1999) J. Indian Soc. Cotton Improv., 24(1), 14-17.
19. Potdukhe N.R. (2001) Crop Improv., 28 (1), 187-190.
20. Qingzhi Liang, Lianguang Shang, Yumei Wang and Jinping Hua (2015) PLoS ONE, 10(11), e0143548. 1- 21
21. Rakshe M. B., Ujjainkar V.V. and Yergude P. (2019) Multilogic in Science, VIII (XXVIII) 131-135.
22. Santhanam V. and Sundaram V. (1997) Asian Agri-History, 1(4), 235-251.
23. Shang L. Yumei Wang, Shihu Cai, Lingling Ma, Fang Liu, Zhiwen Chen, Ying Su, Kunbo Wang and Jinping Hua (2016) Sci Rep., 6, 35515.
24. Shull G.H. (1914) Genetic.,33, 439-446.
25. Singh R.K. and Chaudhary B.D. (1985) Biometrical methods in Quantitative Genetics Analysis. Kalyani Publication, Ludhiana.
26. Sudha Rani, M Rani Chapara and Satish Y. (2020) International Journal of Chemical Studies, 8(3), 2496-2500.
27. Bharad S. (2004) PhD Thesis, Dr Panjabrao Deshmukh Krishi Vidyapeeth, Akola, 444 104, Maharashtra, India.
28. Tomar S.K. and Singh S.P. (1993) Indian J.Genet., 53 (1), 40-46.
29. Tuteja O.P. (2014) J. Cotton Res. Dev., 28(1), 1-6.
30. Ujjainkar V.V. and Patil V.D. (2020) International Journal of Agriculture Sciences, 12(12), 9991-9994.
31. Ujjainkar V.V., Patil V. D. and Moharil M.P. (2020) International Journal of Genetics, 12(6), 740-744.
32. Ujjainkar V.V. and Moharil M.P. (2020) Remarking Analisation, 4 (11), E38-E44.
33. Wendel J.F. and Albert V.A. (1992) Systematic Botany, 17(1), 115-143.
34. Xiaoli G., Yujie Q., Yinhua J., Shoupu H., Zhaoe P., Liru W. and Xiangming D. (2021) BMC Genomics, 22, 123.
35. Zareen Sarfraz, Muhammad Shahid Iqbal, Xiaoli Geng, Muhammad Sajid Iqbal, Mian Faisal Nazir, Haris Ahmed, Shoupu He, Yinhua Jia, Zhaoe Pan, Gaofei Sun, Saghir Ahmad, Qinglian Wang, Hongde Qin, Jinhai Liu, Hui Liu, Jun Yang, Zhiying Ma, Dongyong Xu, Jinlong Yang, Jinbiao Zhang, Zhikun Li, Zhongmin Cai, Xuelin Zhang, Xin Zhang, Aifen Huang, Xianda Yi, Guanyin Zhou, Lin Li, Haiyong Zhu, Baoyin Pang, Liru Wang, Junling Sun and Xiongming Du (2021) Frontiers in Plant Science, 12, 1-20.
36. Zhang Zheng Sheng, Li XianBi, Xiao YueHua, Luo Ming, Liu DaJun, Hunag Shun Li, Zhang FengXin (2003) Agricultural Sciences in China, 2(1), 13-18.
37. Zhou H., Zhang Y., Dong W.Q., Xu X.M. and Tang C.M. (2020) Photosynthetica, 59(1), 106-115.