SELECTION AND OPTIMIZATION OF IN VITRO POLLEN GERMINATION MEDIUM IN MAIZE (Zea mays L.)

K.J. MEGHANA1*, J. NEETHA2, R.L. RAVIKUMAR3
1Department of Plant Biotechnology, University of Agricultural Sciences, GKVK, Bengaluru, 560065, India
2Department of Plant Biotechnology, University of Agricultural Sciences, GKVK, Bengaluru, 560065, India
3Department of Plant Biotechnology, University of Agricultural Sciences, GKVK, Bengaluru, 560065, India
* Corresponding Author : meghanamanavi@gmail.com

Received : 04-01-2020     Accepted : 27-01-2020     Published : 30-01-2020
Volume : 12     Issue : 1       Pages : 697 - 699
Genetics 12.1 (2020):697-699

Keywords : in vitro pollen germination, maize
Academic Editor : Dr Vlad Muresan
Conflict of Interest : None declared
Acknowledgements/Funding : Authors are thankful to Department of Plant Biotechnology, University of Agricultural Sciences, GKVK, Bengaluru, 560065, India.
Author Contribution : All authors equally contributed

Cite - MLA : MEGHANA, K.J., et al "SELECTION AND OPTIMIZATION OF IN VITRO POLLEN GERMINATION MEDIUM IN MAIZE (Zea mays L.) ." International Journal of Genetics 12.1 (2020):697-699.

Cite - APA : MEGHANA, K.J., NEETHA, J., RAVIKUMAR, R.L. (2020). SELECTION AND OPTIMIZATION OF IN VITRO POLLEN GERMINATION MEDIUM IN MAIZE (Zea mays L.) . International Journal of Genetics, 12 (1), 697-699.

Cite - Chicago : MEGHANA, K.J., J. NEETHA, and R.L. RAVIKUMAR. "SELECTION AND OPTIMIZATION OF IN VITRO POLLEN GERMINATION MEDIUM IN MAIZE (Zea mays L.) ." International Journal of Genetics 12, no. 1 (2020):697-699.

Copyright : © 2020, K.J. MEGHANA, et al, Published by Bioinfo Publications. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

Abstract

The present study was undertaken with the aim of optimising a suitable pollen germination medium for in vitro germination of maize pollen grains. During kharif 2016, of the four pollen germination media evaluated, highest pollen germination percentage of 90.58 percent and a mean tube length of 915 µm was observed in the liquid medium PGM3. However, pollen grains did not germinate in both the solid media evaluated. When the experiment was repeated in kharif 2017 with the inclusion of two additional solid germination media, pollen grains failed to germinate on any of the solid media as well as in the liquid medium PGM3 which supported maximum pollen germination during kharif 2016. These results indicate the inconsistencies in reproducibility of in vitro maize pollen germination. The study needs to be continued with an attempt to understand the various factors that affect germination of maize pollen grains under in vitro conditions.

References

1. Ottaviano E., Gorla M.S. and Pe E. (1982) Theoretical and Applied Genetics, 63(3), 249-254.
2. Ravikumar R.L., Chaitra G.N., Choukimath A.M. and Soregaon C.D. (2013) Euphytica, 189(2), 173-181.
3. Patel R.G. and Mankad A.U. (2014) International Journal of Science and Research, 3(5), 304-307.
4. Kakani V.G., Prasad P.V.V., Craufurd P.Q. and Wheeler T. R. (2002) Plant, Cell & Environment, 25(12), 1651-1661.
5. Kakani V.G., Reddy K.R., Koti S., Wallace T.P., Prasad P.V.V., Reddy V.R. and Zhao D. (2005) Annals of botany, 96(1), 59-67.
6. Salem M.A., Kakani V.G., Koti S. and Reddy K.R. (2007) Crop Science, 47(1), 219-231.
7. Singh S.K., Kakani V.G., Brand D., Baldwin, B. and Reddy K.R. (2008) Journal of Agronomy and Crop Science, 194(3), 225-236.
8. Prasad P.V. and Djanaguiraman, M. (2011) Functional Plant Biology, 38(12), 993-1003.
9. Berger J.D. Kumar S., Nayyar H., Street K.A., Sandhu J.S., Henzell J.M., Kaur J. and Clarke H.C. (2012) Field Crops Research, 126, 119-129.
10. Devasirvatham V., Gaur P.M., Mallikarjuna N., Tokachichu R.N., Trethowan R.M. and Tan D.K. (2012) Functional Plant Biology, 39(12), 1009-1018.
11. Naveed S., Aslam M., Maqbool M.A., Bano S., Zaman Q.U. and Ahmad R.M. (2014) Journal of Animal and Plant Sciences, 24(4), 1141-1145.
12. Coast O., Murdoch A.J., Ellis R.H., Hay F.R. and Jagadish K.S. (2016) Plant, Cell & Environment, 39(1), 26-37.
13. Hatfield J.L. and Dold C. (2018) Corn: Production and Human Health in Changing Climate, 95.
14. Heuer S., Lorz H. and Dresselhaus T. (2000) Sexual plant reproduction, 13(1), 21-27.
15. Aylor D.E. (2004) Agricultural and Forest Meteorology, 123(3-4), 125-133.
16. Cook F.S. and Walden D.B. (1965) Canadian Journal of Botany, 43(7), 779-786.
17. Porter E.K. (1981) Environmental health perspectives, 37, 53-59.
18. Cerovic R., Pajic Z., Filipovic M., Fotiric-Aksic M., Radicevic S., Nikolic D. and Dordevic M. (2014) Genetika, 46(3): 935-948.
19. Schreiber D.N. and Dresselhaus T. (2003) Plant Molecular Biology Reporter, 21(1), 31-41.
20. Broglia M. and Brunori A. (1994) Crop science, 34(2), 528-529.
21. Sato S., Katoh N., Iwai S. and Hagimori M. (1998) Euphytica, 103(1), 29-33.
22. Boavida L.C. and Mccormick S. (2007) The Plant Journal, 52, 570–582.
23. Soares T.L., Silva S.O., Costa M.A.P.C., Santos-Serejo J.A., Souza A.D.S., Lino L. S. M., Souza, E.H. and Jesus O.N. (2008) Crop Breeding and Applied Biotechnology, 8(2), 111-118.
24. De Souza E.H., Souza F.V.D., Rossi M.L., Brancalleao N., Da Silva Ledo C.A. and Martinelli A.P. (2015) Euphytica, 204(1), 13-28.
25. Williams J.H. and Brown C.D. (2018) Acta Botanica Brasilica, 32(3), 454-461.
26. Jayaprakash P. (2018) Pollination in Plants, 81.