ENDOPHYTIC COLONIZATION AND GROWTH PROMOTION OF CAULIFLOWER PLANT BY Bacillus thuringiensis

S.S. THILAGAVATHI1, G. PRASAD2*
1Department of Agricultural Microbiology, Tamil Nadu Agricultural University, Coimbatore, 641003, Tamil Nadu, India
2Department of Agricultural Microbiology, Tamil Nadu Agricultural University, Coimbatore, 641003, Tamil Nadu, India
* Corresponding Author : prasadg@tnau.ac.in

Received : 03-01-2020     Accepted : 26-01-2020     Published : 30-01-2020
Volume : 12     Issue : 1       Pages : 1771 - 1775
Int J Microbiol Res 12.1 (2020):1771-1775

Keywords : Bacillus thuringiensis, Cauliflower, PGPR
Academic Editor : Abdel Raheem M. A., U. Y. Kandekar, Rajpal Diwakar, Marcos Antonio Pesquero, Dr Prabhjot Kaur Gill
Conflict of Interest : None declared
Acknowledgements/Funding : Authors are thankful to Department of Agricultural Microbiology, Tamil Nadu Agricultural University, Coimbatore, 641003, Tamil Nadu, India
Author Contribution : All authors equally contributed

Cite - MLA : THILAGAVATHI, S.S. and PRASAD, G. "ENDOPHYTIC COLONIZATION AND GROWTH PROMOTION OF CAULIFLOWER PLANT BY Bacillus thuringiensis ." International Journal of Microbiology Research 12.1 (2020):1771-1775.

Cite - APA : THILAGAVATHI, S.S., PRASAD, G. (2020). ENDOPHYTIC COLONIZATION AND GROWTH PROMOTION OF CAULIFLOWER PLANT BY Bacillus thuringiensis . International Journal of Microbiology Research, 12 (1), 1771-1775.

Cite - Chicago : THILAGAVATHI, S.S. and G., PRASAD. "ENDOPHYTIC COLONIZATION AND GROWTH PROMOTION OF CAULIFLOWER PLANT BY Bacillus thuringiensis ." International Journal of Microbiology Research 12, no. 1 (2020):1771-1775.

Copyright : © 2020, S.S. THILAGAVATHI and G. PRASAD, Published by Bioinfo Publications. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

Abstract

Bacterial endophytes are endosymbiotic microorganisms live inside plants for at least part of their life cycle without causing visible symptoms and involved in plant growth promotion. The present investigation the endophytic B. thuringiensis was isolated from the plant sample. Five isolates were confirmed on the basis of crystal formation and identified as Bacillus thuringiensis. The colonization capacity of the isolates was studied by recovering B. thuringiensis from the inoculated leaf and stem (2.9 × 107/g) and root (3.9 × 107/g) of the plants. The cauliflower seed germination and seedling development, seven days after planting showed significant increase over un-inoculated control. Further, the selected isolates were screened for the production of cell wall degrading enzymes and multiple plant growth promoting (PGP) traits viz. phosphate (P) and zinc (Zn) solubilization abilities. All five endophytic B. thuringiensis isolates were found positive for the production of cell wall degrading enzymes viz., cellulase, pectinase, protease, endoglucanase, and also having capacity to solubilize phosphate and zinc. The maximum phosphate and Zn solubilization was achieved by the standard strain HD1 followed by isolate CF4 followed by CF2. The ability of Bacillus thuringiensis isolates for IAA production, Gibberellic acid production and Siderophore production too was assessed. IAA and GA3 production were found to be maximum with CF4 (42.67 and 356.8 ?g l-1 respectively), followed by CF2 (31.51 and 296 ?g l-1). Maximum siderophore production was observed in CF4 (374 mg l-1) followed by CF2 (270 mg l-1).

References

1. Wilson D. (1995) Oikos 73, 274-276.
2. Glick, B. R. (2012) Scientifica 1, 15.
3. Lodewyckx C., Vangronsveld J., Porteus F., Moore E.R.B., Taghavi S., Mezgeay M., Lelie D.V. (2002) Critical Reviews in Plant Sciences 21, 586-606.
4. Lebeis S.L. (2014) The Frontiers in Plant science 5, 287.
5. Kumar A., Prakash A. and Johri B.N. (2011) Bacteria in Agrobiology and crop Ecosystems 37, 59.
6. Ali M. and Vora D. (2014) International Research Journal of Environment Sciences 3(9), 27-31.
7. Sarker A., Talukder N.M. and Islam M.T. (2014) Plant Science Today 1(2), 86-93.
8. Qi J., Aiuchi D., Tani M., Asano S. and Koike M. (2016) International journal of environment and agriculture research 2(6), 55-63.
9. Gomes A.M.A., Mariano R.L.R., Silveira E.B., Mesquita J.C.P. (2003) Horticultura Brasileira 21, (4).
10. Jouzani G.S., Valijanian E. and Sharafi R. (2017) Applied Microbiology and Biotechnology 101, 2691.
11. Raddadi N., Cherif A., Ouzari H., Marzorati M., Brusetti L., Boudabous A. and Daffonchio D. (2007) Annuals Microbiology 57(4), 81-494.
12. Jouzani G.S., Valijanian E. and Sharafi R. (2017) Applied Microbiology and Biotechnology 101, 2691.
13. Reinhold H.B., Maes T., Gemmer S., Van Montagu M. and Hurek T. (2006) Molecular Plant-Microbe Interactions 19, 181-188.
14. Maroof A., Muzaffer H., Manoj K.D. and Sanjana K. (2012) Journal of Natural Product and Plant Resources 2(2), 215-20.
15. Kuo J., Fox E. and Mac Donald S. (1992) Jandel Scienti Wc, San Francisco, CA.
16. Hankin L. and Anagnostakis S.L. (1977) Journal of General Microbiology 98 (1), 109-115.
17. Gautam, S.P., Bundela P.S., Pandey A.K., Jamaluddin M.K., Awasthi and Sarsaiya S. (2012) International Journal of Microbiology 1, 12.
18. Salomao T.M.F., Amorim A.C.R., Alves V.M.C., Coelho J.L.C., Silva D.O. and Araujo E. (1996) Revista de Microbiologia 27(1), 15-18.
19. Chaiharn M., Chunhaleuchanon S., Kozo A. and Lumyong S. (2008) KMITL Science Technology Journal 8 (1), 18-23.
20. Patten C.L and Glick B.R, (2002) Applied and Environmental Microbiology, 68: 3795-3801.
21. Rahman A., Sitepu I.R., Tang S.Y., Hashidoko Y. (2010) Bioscience Biotechnology and Biochemistry 74, 2202-2208.
22. Berryos J., Illanes A. and Aroca G. (2004) Biotechnology Letter 26, 67-70.
23. Naveen Kumar A and Maya V. (2017) 3 Biotech 7, 381.
24. Pikovskaya R.I. (1948) Microbiologiya 17, 362-370.
25. Fasim F., Ahmed N., Parsons R. and Gadd G.M. (2002) FEMS Microbiology Letter 213, 1-6.
26. Arango J.A., Romero M. and Orduz S. (2002) Journal of Applied Microbiology 92, 466-474.
27. Cristian V.Q.J., Hilary J.R., Mahenthiralingam E. and Berry C. (2013) FEMS Microbiology Ecology 86, 474-489.
28. Elbeltagy A., Nishioka K., Sato T., Suzuki H., Ye B., Hamada T., Isawa T. and Mitsui H. (2001). Applied Environment Microbiology 67, 5285-5293.
29. Jara S., Maduell P. and Orduzl S. (2006) Journal of Applied Microbiology 101, 117-124.
30. Maduell P., Callejas R., Cabrera K.R., Armengol G. and Ord-uz S. (2002) Microbial Ecology 44, 144-153.
31. Beattie, G.A. and Lindow S.E. (1995) Annual Review Phytopathology 33, 145-172.
32. Reinhold H.B., Maes T., Gemmer S., Van Montagu M. and Hurek T. (2006) Molecular Plant-Microbe Interactions 19, 181-188.
33. Susilowati D.N., Sudiana I.M., Mubarika N.R. and Suwanto A. (2015) Indonesia Journal of Agriculture Science 16, 39-50.
34. Dey S., Roy K., Barua R., Uddin M.D., Kamal., Hossain M.D. and Towhid. (2018) Research Journal of Biotechnology 13, (9).
35. Gomma, E. Z. (2013) Brazilian Journal of Microbiology 44, 572-77.
36. Sivasakthi S., Kanchana D., Usharani G. and Saranraj P. (2013) International Journal of Microbiological Research 4 (3), 227-233.
37. Sarker A., Talukder N.M. and Islam M.T. (2014) Plant Science Today 1(2), 86-93.
38. Mohammadi K. (2012) Resource Environment 2(1), 80-85.
39. Sharma K., Sushil P., Mahaveer Sharma., Ramesh A., and Om P., Joshi. (2012) Journal of Microbiology and Biotechnology 22(3), 352-359.
40. Gontia-Mishra I., Sapre S. and Tiwari S. (2017) Rhizosphere 3, 185-190.
41. Tilak K.V., Ranganayaki N., Pal K.K., Saxena A.K., Nautiyal C.S., Mittal S., Tripathi A.K. and Johri B.N. (2005) Current Science 89(1), 136-150.
42. Pankaj Kumar., Dubey R.C., Maheswari D.L. 2012. Microbiological Research 167, 493-499.
43. UmaMaheswari T., Anbukkarasi K., Hemalatha T. and Chendrayan K. (2013) International Journal of Current Microbiology and Applied Science 2(6), 127-136.
44. Shakeela S., Padder S.A., Bhat Z.A. (2017) The pharmaceutical Inn 6 (6), 160-17.
45. Zhao L., Yajun X., Sun R., Deng Z., Yang W. and Wei G. (2011). Brazilian Journal of Microbiology 42, 567-575.
46. Qi J., Aiuchi D., Tani M., Asano S. and Koike M. (2016) International journal of environment and agriculture research 2(6), 55-63.
47. Praca L.B., Gomes A.C.M.M., Cabral G., Martins E.S., Sujii E.R. and Monnerat R.G. (2012) Bt Research 3, 11-19.
48. Jiaheling Q.I., Daigo A., Masayuki T., Shin-ichiro A. and Masanori K. (2016) International Journal of Environmental & Agriculture Research 2(6), 2454-1850.