IN VITRO SELECTION OF TRADITIONAL LANDRACES FOR THE DEVELOPMENT OF CLIMATE RESILIENT RICE GENOTYPES

K. PRAVIN KUMAR1, A.K. BINODH2*, S. SARAVANAN3, A. SENTHIL4, N. SENTHIL KUMAR5, S. MERINA PREM KUMARI6
1Department of Plant Breeding and Genetics, Agricultural College and Research Institute, Killikulam, 628252, Tamil Nadu Agricultural University, Coimbatore, 641003
2Department of Plant Breeding and Genetics, Agricultural College and Research Institute, Killikulam, 628252, Tamil Nadu Agricultural University, Coimbatore, 641003, Tamil Nadu, India
3Department of Plant Breeding and Genetics, Agricultural College and Research Institute, Killikulam, 628252, Tamil Nadu Agricultural University, Coimbatore, 641003, Tamil Nadu, India
4Department of Crop Physiology, Tamil Nadu Agricultural University, Coimbatore, 641003, Tamil Nadu, India
5Department of Agronomy, Agricultural College and Research Institute, Killikulam, 628252, Tamil Nadu Agricultural University, Coimbatore, 641003, Tamil Nadu, India
6Department of Plant Breeding and Genetics, Agricultural College and Research Institute, Killikulam, 628252, Tamil Nadu Agricultural University, Coimbatore, 641003, Tamil Nadu, India
* Corresponding Author : akbinodh@gmail.com

Received : 02-05-2019     Accepted : 26-05-2019     Published : 30-05-2019
Volume : 11     Issue : 5       Pages : 597 - 600
Genetics 11.5 (2019):597-600

Keywords : Rice, Drought, Osmotic Stress, Landraces, PEG6000, R/S Ratio
Conflict of Interest : None declared
Acknowledgements/Funding : Authors are thankful to NADP-GOI phase IV by Tamil Nadu Agricultural University, Coimbatore, 641003, Tamil Nadu, India for financial support
Author Contribution : All authors equally contributed

Cite - MLA : PRAVIN KUMAR, K., et al "IN VITRO SELECTION OF TRADITIONAL LANDRACES FOR THE DEVELOPMENT OF CLIMATE RESILIENT RICE GENOTYPES ." International Journal of Genetics 11.5 (2019):597-600.

Cite - APA : PRAVIN KUMAR, K., BINODH, A.K., SARAVANAN, S., SENTHIL, A., SENTHIL KUMAR, N., MERINA PREM KUMARI, S. (2019). IN VITRO SELECTION OF TRADITIONAL LANDRACES FOR THE DEVELOPMENT OF CLIMATE RESILIENT RICE GENOTYPES . International Journal of Genetics, 11 (5), 597-600.

Cite - Chicago : PRAVIN KUMAR, K., A.K. BINODH, S. SARAVANAN, A. SENTHIL, N. SENTHIL KUMAR, and S. MERINA PREM KUMARI. "IN VITRO SELECTION OF TRADITIONAL LANDRACES FOR THE DEVELOPMENT OF CLIMATE RESILIENT RICE GENOTYPES ." International Journal of Genetics 11, no. 5 (2019):597-600.

Copyright : © 2019, K. PRAVIN KUMAR, et al, Published by Bioinfo Publications. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

Abstract

Rice production in India depends on low land ecosystem and Rice varieties that can grow and produce well on upland are indispensable. Increasing the rice productivity remains a major concern due to change in climate variables and related factors. The use of in- vitro selection method for crop breeding has been widely used to improve the tolerant properties against biotic and abiotic factors. Germination of seeds and establishment of seedlings assume great significance for effective screening of genotypes for biotic and abiotic stresses. With this background, this study was aimed to screen traditional rice landraces for drought tolerance under in-vitro condition. Evaluation for drought tolerance during germination was accomplished by placing 100 seeds in germination paper with three replications in completely randomized design (CRD) using PEG 6000, at three levels of osmotic potential viz., (-) 10 bars, (-) 12.5 bars, and (-) 15 bars against a control. Significant mean sum of squares obtained for all the traits studied indicated the existence of variation among the genotypes. Under in-vitro condition, 15% of genotypes germinated at maximum osmotic potential (-) 15 bars, of which only six genotypes possessed > 40% germination efficiency. Among the six number of genotypes tested, Kuliyadichan recorded the highest root-shoot ratio (R/S) and signifies better source-sink relationship followed by Chandaikar, Mallikar, Mattaikar, Rajalakshmi and Sivappumalli. Hence it was concluded that these landraces, with highest drought tolerant potential, may be utilized in breeding programme to evolve drought tolerant varieties or hybrids.

References

1. Bertin C., Yang X.H. and Weston L.A. (2003) Plant and Soil, 256(1),67–83.
2. Govindaraj M., Shanmugasundaram P., Sumathi P. and Muthiah A.R. (2010) Electronic J. Pl. Breed., 1(4), 590-599.
3. Jiao Y., Wang Y., Xue D., Wang J., Yan M., Liu G., & Qian Q. (2010) Nature genetics, 42(6), 541.
4. Jongdee B., Fukai S., & Cooper M. (2002) Field Crops Research, 76(2-3), 153-163.
5. Kim Y. J., Shanmugasundaram S., Yun S.J., Park H.K. and Park M. S. (2011) Korean J Crop Sci, 46, 284-288.
6. Kumar S. A., Lo P. H. & Chen S. M. (2008) Biosensors and Bioelectronics, 24(4), 518-523.
7. Lobato A.K.S., Costa R.C.L., Oliveira Neto C.F., Santos Filho B.G., Gonçalves-Vidigal M.C., Vidigal Filho, P.S, Silva C.R., Cruz F.J.R., Carvalho P.M.P., Santos P.C.M. and Gonel A. (2009) Plant, Soil and Environment., 5, 139-145.
8. Malamy J. E. (2005) Plant, cell & environment, 28(1), 67-77.
9. Nasim M.R., Qureshi T., Aziz M., Saqib S., Nawaz S.T. and Pervaiz S. (2008) Pakistan Journal of Botany, 40, 799–805.
10. Niklas K.J. (2006) New Phytologist, 171(1), 27-40.
11. Niklas K.J. and Spatz H.C. (2006) Am J Bot, 93(6),824–828.
12. Osman Basha P., Sudarsanan G., Madhu Sudhana Reddy M. and Siva Sankar N. (2015) Intl. J. Recent Scientific Res., 6(5), 4044-4049.
13. Pandey V. and Shukla A. (2015) Rice Sci., 22(4), 14-161.
14. Pantuwan G., Fukai S., Cooper M., Rajatasereekul S. and O ‘Toole, J.C. (2002) Field Crops Res., 73, 181–200.
15. Piwowarczyk B., Kaminska I. and Rybinski W. (2014) Czech J. Genet. Plant Breed, 50(2), 77-83.
16. Prasad R. (2011) Adv. in Agron., 111, 207-247.
17. Price A. H., Cairns J. E., Horton P., Jones H. G., & Griffiths H. (2002) Journal of experimental botany, 53(371), 989-1004.
18. Radhouane L. (2007) African J. of Biotech., vol. 6, pp. 1102-1105.
19. Sokoto M. B. & Muhammad A. (2014) Journal of biosciences and Medicines, 2(01), 68.
20. Swain D.L., Tsiang M., Haugen M., Singh D., Charland A., Rajaratnam B. & Diffenbaugh N. S. (2014) Am. Meteorol. Soc, 95(9), S3-S7.
21. Tripathy J.N., Zhang J., Robin S., Nguyen T.T. & Nguyen H.T. (2000) Theoretical and Applied Genetics, 100(8), 1197-1202.
22. Van den Berg L. and Zeng Y. J. (2006) Afr. J. Bot, 72, 284-286.
23. Van Der Putten WH. (2003) Ecology, 84(9),2269–2280.
24. Waisel Y., Eshel A. and Kafkafi U (Eds). (2002) Plant Roots, The Hidden Half. 3 edition. New York, Basel, Marcel Dekker Inc.
25. Wang S., Ikediala J. N., Tang J. & Hansen J. D. (2002) Journal of Stored Products Research, 38(5), 441-453
26. White P.J., George T.S., Gregory P.J., Bengough A.G., Hallett P.D., and McKenzie B.M. (2013) Matching roots to their environment. Ann. Bot., 112, 207–222
27. Xu W., Cui K., Xu A., Nie L., Huang J. and Peng S. (2015) Acta Physiol Plant, 37(9), 1-11.