PROFILING OF VOLATILES EMITTED BY PSEUDOMONAS FLUORESCENS KRB7 USING GC-MS-TD AND THEIR EFFECT ON PLANT GROWTH PROMOTION OF TOBACCO (NICOTIANA TABACUM L.)

M.S. VIDHYASRI1, V. GOMATHI2*, U. SIVAKUMAR3
1Department of Agricultural Microbiology, Tamil Nadu Agricultural University, Coimbatore, 641 003, Tamil Nadu, India
2Department of Agricultural Microbiology, Tamil Nadu Agricultural University, Coimbatore, 641 003, Tamil Nadu, India
3Department of Agricultural Microbiology, Tamil Nadu Agricultural University, Coimbatore, 641 003, Tamil Nadu, India
* Corresponding Author : kvgmathi@yahoo.co.in

Received : 01-05-2019     Accepted : 26-05-2019     Published : 30-05-2019
Volume : 11     Issue : 5       Pages : 1576 - 1579
Int J Microbiol Res 11.5 (2019):1576-1579

Keywords : Pseudomonas fluorescens KRB7, Fusarium oxysporum, Volatile organic compounds, GC-MS-TD, Induced systemic resistance
Conflict of Interest : None declared
Acknowledgements/Funding : Authors are thankful to the Ministry of Human Resources Development (MHRD), New Delhi for providing financial assistance to undertaking this research. Authors are also thankful to Agricultural Microbiology, Tamil Nadu Agricultural University, Coimbatore, 641 003, Tamil Nadu, India
Author Contribution : All authors equally contributed

Cite - MLA : VIDHYASRI, M.S., et al "PROFILING OF VOLATILES EMITTED BY PSEUDOMONAS FLUORESCENS KRB7 USING GC-MS-TD AND THEIR EFFECT ON PLANT GROWTH PROMOTION OF TOBACCO (NICOTIANA TABACUM L.)." International Journal of Microbiology Research 11.5 (2019):1576-1579.

Cite - APA : VIDHYASRI, M.S., GOMATHI, V., SIVAKUMAR, U. (2019). PROFILING OF VOLATILES EMITTED BY PSEUDOMONAS FLUORESCENS KRB7 USING GC-MS-TD AND THEIR EFFECT ON PLANT GROWTH PROMOTION OF TOBACCO (NICOTIANA TABACUM L.). International Journal of Microbiology Research, 11 (5), 1576-1579.

Cite - Chicago : VIDHYASRI, M.S., V. GOMATHI, and U. SIVAKUMAR. "PROFILING OF VOLATILES EMITTED BY PSEUDOMONAS FLUORESCENS KRB7 USING GC-MS-TD AND THEIR EFFECT ON PLANT GROWTH PROMOTION OF TOBACCO (NICOTIANA TABACUM L.)." International Journal of Microbiology Research 11, no. 5 (2019):1576-1579.

Copyright : © 2019, M.S. VIDHYASRI, et al, Published by Bioinfo Publications. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

Abstract

Volatile organic compounds (VOCs) produced by plant growth promoting rhizobacteria (PGPR) has emerged as a mode of communication between bacteria and plants. In current study in vitro experiment was conducted to investigate the effect of volatile organic compounds (VOCs) produced by the plant growth promoting rhizobacterium Pseudomonas fluorescens KRB7(was originally isolated from paddy rhizosphere soil) on Nicotiana tabacum. Volatile organic compound (VOCs) emitted from the Pseudomonas fluorescens KRB7was evaluated under in vitro were resulted in significant growth promotion on tobacco plants and also has potential to inhibit the mycelium growth of pathogen Fusarium oxysporum. VOCs emitted by Pseudomonas fluorescens KRB7 was identified through gas chromatography/mass spectrometry- thermal desorption (GC-MS-TD) analysis. These results suggest that a volatile compound released from Pseudomonas fluorescens KRB7significantly enhances the plant growth promotion and immunity.

References

1. Kloepper J.W., Ryu C.M. and Zhang S. (2004) Phyto pathol., 94,1259-1266.
2. Ryu C.M, Murphy J.F., Mysore K.S. and Kloepper J.W. (2004) Plant J 39, 381–392.
3. Schalchli H., G. Tortella R., Rubilar O., Parra L., Hormazabal E., and Quiroz A. (2014) Crit. Rev.Biotechnol.,8, 1–9.
4. Farag M., Zhang H. and Ryu C.M. (2013) J. Chem. Ecol., 39, 1007–1018.
5. Garbeva P., Hordijk C. ,Gerards S. and DeBoer W. (2014) Front. Microbiol., 5, 289.
6. Strobel G. (2006) Curr. Opin. Microbiol., 9, 240–244.
7. Ganeshan G. and Kumar M.A. (2006) Journal of Plant Interactions, 1(3), 123-134.
8. Szentes, S., Gabriel-Lucian R., Laslo É., Lányi S., and Mara G. (2013) Crop Prot., 52, 116-124.
9. Lingaiah S. and Umesha S. (2013) Can. J. Plant Prot., 1, 147-153.
10. Faheem M., Raza W., Jun Z., Shabbir S. and Sultana N. (2015) Sci. Lett., 3, 94-97.
11. Raza W., Faheem M., Yousaf S., Rajer F.U. and Yamin M. (2013) Sci. Lett., 1, 21–24.
12. Yunus F., Iqbal M., Jabeen K., Kanwal Z. and Rashid F. (2016) Sci. Lett., 4, 66-70.
13. Schulz S. and Dickschat J.S. (2007) Nat. Prod.Rep.,24, 814–842.
14. Audrain B., Frag M.A., Ryu C.M., and Ghigo J.M. (2015) FEMS Microbiol. Rev., 39, 222-233.
15. Ryu, C.M., Farag M.A., Hu C.H., Reddy M.S. and Wei H.X. (2003) Proc Natl Acad Sci U S A, 100, 4927– 4932.
16. Hernández-León R., Rojas-Solís D., Contreras-Pérez M., Orozco-Mosqueda M.C., Macías- Rodríguez L.I., Reyes-de la Cruz H., Valencia-Cantero E. and Santoyo G. (2015) Biol. Cont., 81, 83-92.
17. Hung R., Lee S. and Bennett J.W. (2013) Fungal Ecol., 6,19–26
18. Voisard C., Keel Haas D.and Defago G. (1989) EMBO J., 8, 351–358.
19. Blom D., Fabbi C., Connor E. C., Schiestd F. P., Klauser D. R., Boller T., Eberl L. and Weisskopf L. (2011) Environ Microbiol. 13,3047-58.
20. Lee B., Farag M. A., Park H. B., Kloepper J. W., Lee S. H. and Ryu. C. M. (2012) PLoS One, 7,e48744.
21. Ryu C.M., Farag M.A., Hu C.H., Reddy M.S. and J.W. (2004) Plant Physiol., 134, 1017–1026.
22. Ryu C.M, Kim J., Choi O., Kim S.H. and Park C.S. (2006) Biol Control 39, 282–289.
23. Hunziker L., Bonisch D., Groenhagen U., Bailly A., Schulz S. and Weisskopf L. (2015) Appl. Environ. Microbiol., 81, 821–830.
24. Rudrappa T., Splaine R.E., Biedrzycki M.L. and Bais H.P. (2008) PLoS ONE, 3,e2073.
25. Kai M., Effmert U., Berg G. and Piechulla B. (2007) Arch.Microbiol., 187, 351–360.
26. Kloepper J. and Jr. Metting F. (1992) Soilmicrobial ecology, applications in agricultural and environmental management, 255–274.
27. Raza W., Yuan J., Ling N., Huang Q. and Shen Q. (2015) Biocont., 80, 89-95.