GENETIC DIVERSITY & TRANSFERABILITY OF CHICKPEA - SEQUENCE TAGGED MICROSATELLITE SITES (STMS) PRIMERS TO VIGNA & PHASEOLUS SPECIES

P. BHARETI1*, R.K. PANWAR2, A. ARORA3, S.K. VERMA4
1Department of Genetics & Plant Breeding, College of Agriculture, Govind Ballabh Pant University of Agriculture & Technology, Pantnagar, Uttarakhand 263 145, India
2Department of Genetics & Plant Breeding, College of Agriculture, Govind Ballabh Pant University of Agriculture & Technology, Pantnagar, Uttarakhand 263 145, India
3Department of Genetics & Plant Breeding, College of Agriculture, Govind Ballabh Pant University of Agriculture & Technology, Pantnagar, Uttarakhand 263 145, India
4Department of Genetics & Plant Breeding, College of Agriculture, Govind Ballabh Pant University of Agriculture & Technology, Pantnagar, Uttarakhand 263 145, India
* Corresponding Author : bhareti.priyanka9@gmail.com

Received : 01-05-2019     Accepted : 15-05-2019     Published : 30-05-2019
Volume : 11     Issue : 5       Pages : 587 - 593
Genetics 11.5 (2019):587-593

Keywords : Diversity, STMS, Vigna, alleles, UPGMA
Conflict of Interest : None declared
Acknowledgements/Funding : Authors are thankful to Department of Genetics and Plant Breeding. Govind Ballabh Pant University of Agriculture & Technology, Pantnagar, Uttarakhand 263 145, India
Author Contribution : All authors equally contributed

Cite - MLA : BHARETI, P., et al "GENETIC DIVERSITY & TRANSFERABILITY OF CHICKPEA - SEQUENCE TAGGED MICROSATELLITE SITES (STMS) PRIMERS TO VIGNA & PHASEOLUS SPECIES." International Journal of Genetics 11.5 (2019):587-593.

Cite - APA : BHARETI, P., PANWAR, R.K., ARORA, A., VERMA, S.K. (2019). GENETIC DIVERSITY & TRANSFERABILITY OF CHICKPEA - SEQUENCE TAGGED MICROSATELLITE SITES (STMS) PRIMERS TO VIGNA & PHASEOLUS SPECIES. International Journal of Genetics, 11 (5), 587-593.

Cite - Chicago : BHARETI, P., R.K. PANWAR, A. ARORA, and S.K. VERMA. "GENETIC DIVERSITY & TRANSFERABILITY OF CHICKPEA - SEQUENCE TAGGED MICROSATELLITE SITES (STMS) PRIMERS TO VIGNA & PHASEOLUS SPECIES." International Journal of Genetics 11, no. 5 (2019):587-593.

Copyright : © 2019, P. BHARETI, et al, Published by Bioinfo Publications. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

Abstract

Eight chickpea STMS primers were used to amplify 31 genotypes of eight Vigna & one Phaseolus species collected from GBPUA & T, Pantnagar, PCPGR, Pantnagar & Banaras Hindu University Banaras. Number of alleles per locus ranged from 3 for STMS primer TA59, which varied in size from 100 to 500 bp. Amplification of genomic DNA of thirty one genotypes, yielded 10 fragments, with an overall mean of 0.8 alleles per locus of which 9 were polymorphic while the remaining one was monomorphic. The eight STMS primers show an overall of 95.833% polymorphism. The PIC value ranged from 0.54, for locus TA59, to 0.375, for locus TA27, with a mean of 0.29. The cluster analysis using the UPGMA method displayed three clusters with 2, 5 & 24 genotypes respectively. The locus-wise total gene diversity (HT) ranged from 0.177 at TA59 to 0.499 at TA27, with an overall mean of 0.354 & the major allele frequency ranged from 0.516 for TA27 to 0.8925 for TA59, with an overall mean of 0.740. Five out of the eight chickpea STMS primer-pairs were >70% successfully transferable across the Vigna & Phaseolus species. The highest level of successful amplifications with a single primer TA110 was 83.87%. The present study indicates that the locus-specificity, co-dominant nature & transferability of STMS markers permit the fast & high throughout fingerprinting of genotypes from one genus to other to estimate their genetic diversity.

References

1. Kumar N.V., Lavanya G.R., Singh S.K. and Pandey P. (2010) AAB-Bioflux, 2(3), 251-257.
2. Nair R.M., Schafleitner R., Kenyon L., Srinivasan R., Easdown W., Ebert A. and Hanson P. (2012) Genetic improvement of mungbean productivity. Proceedings of the 12th SABRAO Congress on Plant Breeding towards 2025, Challenges in a Rapidly Changing World, 13–18 January 2012, Chiang Mai, 27–28.
3. Indian Institute of Pulses Research (IIPR). (2011) Vision 2030. Gupta S (ed.) Indian Institute of Pulses Research (ICAR), Kanpur, 42.
4. Poehlman J.M. (1991) Climatic requirements. In, The Mungbean, Oxford & IBH Publishing, New Delhi, 24–50.
5. Somta P., Musch W., Kongsamai B., Chanprame S., Nakasathien S., Toojinda T., Sorajjapinun W., Seehalak W., Tragoonrung S. and Srinives P. (2008) Mol. Eco. Res., 8(5), 1155–1157.
6. deCandolle A. (1884) Origin of Cultivated Plants, Haffner, New York, 346.
7. Vavilov N.I. (1926) Bull. Applied Bot. Plant breed. Leningrad, State Press, 26, 1-248, 139- 248
8. Fuller D.Q. (2002) Fifty years of archaeological studies in India, laying a solid foundation. In, Settar S, Korisettar R (eds) India archaeology in retrospect, vol. III. Archaeology & interactive disciplines. Indian Council of Historical Research, Manohar, 247–364.
9. Sivaprakash K.R., Prashanth S.R., Mohanty B.P. and Parida A. (2004) Curr. Sci., 86(10), 1411–1416.
10. Souframanien J. and Gopalakrishna T. (2004) Theo. and App. Genet., 109(8),1687– 1693.
11. Purseglove J.W. (1968) Tropical crops, Dicotyledons I. John Wiley & Sons, NewYork, 294-295.
12. Rachie K.O. and Roberts L.M. (1974) Advan. in Agro., 26, 1-132.
13. Majumdar B.R., Sen S. and Roy S.R. (1968) Ind. Farm., 18, 23-30.
14. Kaplan L. (1981) Eco. Bot., 35(2), 240-254.
15. Campos T., Benchimol L.L., Carbonell S.A.M., Chioratto A.F., Formighieri E.F., and de Souza A.P. (2007) Pes. Agro. Brasi., 42, 589–592.
16. FAO. (2003) Production Yearbook, 56, 109–110.
17. Harlan W.B. (1975) Nature, 253, 505-507.
18. Galvan M.Z., Sevillano M.C., De Ron A.M., Santalla M. and Balatti P.A.(2006) Genet. Res. and Crop Evo., 53(5), 891–900.
19. Metais I., Hamon B., Jalouzot R. and Peltier D. (2002). Theo. and App. Genet., 104(8), 1346-1352.
20. Nodari R.O., Tsai S.M., Gilbertson R.L. and Gepts P. (1993a). Theo. and App. Genet., 85(5), 513-520.
21. Adam-Blondom A., SeVignac M. and Dron M. (1994) Genome, 37(6), 915–924.
22. Beebe S.E., Skroch P., Tohme J., Duque M., Pedraza F. and Nienhuis J.(2000) Crop Sci., 40(1), 264–273.
23. Taran B., Michaels T.E. and Pauls K.P. (2002) Crop Sci., 42(2), 544–556.
24. Kumar J., Choudhary A.K., Solanki R.K. and Pratap A. (2011a) Plt. Breed., 130, 297–313.
25. Kumar J., Pratap A., Solanki R.K., Gupta D.S., Goyal A., Chaturvedi S.K., Nadarajan N. and Kumar S. (2011b) J. of Agral. Sci., 150(3), 289–318.
26. Gaitan-Solis E., Duque M.C., Edwards K. J. and Tohme J. (2002) Crop Sci., 42(6), 2128–2136.
27. Choumane W., Winter P., Weigand F. and Kahl G. (2000) Theo. and App.Genet., 101(1-2), 269-278.
28. Pandian A., Ford R. and Taylor P.W.J. (2000) Plt. Mol. Biol. Reports., 18, 395a 395h.
29. Maguire T.L., Edwards K.J., Saeger P. and Henry R. (2000) Theo. and App. Genet., 101(1-2), 279–285.
30. Nybom H. (2004) Mol. Ecol., 13(5), 1143–1155.
31. Doyle J.J. and Doyle J.L. (1987) Phytochem. Bullet., 19, 11-15.
32. Rohlf F.J. (2000) NTSYS-PC, Numerical Taxonomy & Multivariate Analysis System. Version 2.11T. - Exeter Software, Setauket.
33. Jaccard P. (1908) Bull. Soc. Vaud. Sci. Nat., 44, 223-270.
34. Liu K. and Muss S.V. (2005) Bioinform., 21(9), 2128-2129.
35. Moose S.P. and Mumm R.H. (2008) Plt. Phys., 147, 969–977.
36. Mullis K., Faloona F., Scharf S., Saiki R., Horn G. and Erlich H. (1986) Quant. Biol., 51, 263-273.
37. Schmidt R. (2000) Curr. Opin. Plant. Biol., 3(2), 97–102.
38. Edmeades G.O., McMaster G.S., White J.W. and Campos H. (2004) Field.Crop Res., 90(1), 5–18.
39. Humphry M.E., Lambrides C.J., Chapman S.C., Aitken E.A.B., Imrie B.C.,Lawn R.J., (2005) Plant Breed. 124(3),292–298
40. Ochanda N., Yu J., Bramel P.J., Menkir A., Tuinstra M.R. and Witt M.D.(2009) Field Crops Res., 112 (1), 37–42.
41. Phansak P., Taylor P.W.J. and Mongkolporn O. (2005) Scientia Horticulturae, 106(2), 137-146.
42. Pandey A., Amit K. and Ramya P. (2011) Afri. J. of Biotech., 10(75), 17081-17087.
43. Yu K., Park S.J. and Poysa V. (1999) Genome, 42(1), 27–34.
44. Wang Z., Weber J.L., Zhong G. and Tanksley S.D. (1994) Theo. and App.Genet., 88(1), 1–6.
45. Akkaya M.S., Bhagwat A.A. and Cregan P.B. (1992) Genetics, 132(4), 1131–1139.
46. Jarne P. and Lagoda P.J.L. (1996) Trends in Eco. and Evol., 11(10), 424–429.
47. Blair M.W., Pedraza F., Buendia H.F., Gaitan-Solis E., Beebe S.E., Gepts P. and Tohme J. (2003) Theo. and App. Genet., 107(8), 1362–1374.
48. Davidson B. and Davidson H. (1993) Legumes, the Australian experience. In, Nutman P (ed) The botany, ecology and agriculture of indigenous and immigrant legumes. Research Studies Press Ltd, England, 401–402.