BIOCHEMICAL CHANGES IN CONTINUOUS APPLICATION OF MANURES AND FERTILIZER UNDER RICE MONOCULTURE OVER FOUR DECADES IN TYPIC HAPLUSTALF

C. RAMYA1, B. GOKILA2*, B. BAKIYATHU SALIHA3, K. BASKAR4
1Tamil Nadu Agricultural University, Coimbatore, 641 003, Tamil Nadu, India
2Tamil Nadu Agricultural University, Coimbatore, 641 003, Tamil Nadu, India
3Tamil Nadu Agricultural University, Coimbatore, 641 003, Tamil Nadu, India
4Tamil Nadu Agricultural University, Coimbatore, 641 003, Tamil Nadu, India
* Corresponding Author : singh_gokila@rediffmail.com

Received : 10-04-2019     Accepted : 27-04-2019     Published : 30-04-2019
Volume : 11     Issue : 4       Pages : 1544 - 1549
Int J Microbiol Res 11.4 (2019):1544-1549

Keywords : Urease, Phosphatase, Dehydrogenase, Soil enzymes, Manures, Fertilisers
Academic Editor : Dr Abhishek Pratap Singh, Amit Fulzele
Conflict of Interest : None declared
Acknowledgements/Funding : Authors are thankful to Tamil Nadu Agricultural University, Coimbatore, 641 003, Tamil Nadu, India for financial support
Author Contribution : All authors equally contributed

Cite - MLA : RAMYA, C., et al "BIOCHEMICAL CHANGES IN CONTINUOUS APPLICATION OF MANURES AND FERTILIZER UNDER RICE MONOCULTURE OVER FOUR DECADES IN TYPIC HAPLUSTALF." International Journal of Microbiology Research 11.4 (2019):1544-1549.

Cite - APA : RAMYA, C., GOKILA, B., BAKIYATHU SALIHA, B., BASKAR, K. (2019). BIOCHEMICAL CHANGES IN CONTINUOUS APPLICATION OF MANURES AND FERTILIZER UNDER RICE MONOCULTURE OVER FOUR DECADES IN TYPIC HAPLUSTALF. International Journal of Microbiology Research, 11 (4), 1544-1549.

Cite - Chicago : RAMYA, C., B. GOKILA, B. BAKIYATHU SALIHA, and K. BASKAR. "BIOCHEMICAL CHANGES IN CONTINUOUS APPLICATION OF MANURES AND FERTILIZER UNDER RICE MONOCULTURE OVER FOUR DECADES IN TYPIC HAPLUSTALF." International Journal of Microbiology Research 11, no. 4 (2019):1544-1549.

Copyright : © 2019, C. RAMYA, et al, Published by Bioinfo Publications. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

Abstract

Biochemical reactions are the important nutrient transformation processes in organic and inorganic substance in soil environment through the catalytic activity of biomolecules called enzymes. Long term manures and fertilizer applications and continuous cropping of rice monoculture have a significant impact on soil enzymatic activities in a soil system. The investigation assessed the effect of long term manure and fertilizer usage on soil enzyme activities through organic manures viz., FYM, GLM and UC @ 12.5 t ha-1 and omission of N, P, K and addition of NPK with recommended dose of 150:50:50 kg N, P2O5 and K2O respectively. Combined application of manures GLM @ 12.5 t ha-1 along with NPK application was significantly increased the urease (20.61 %), phosphatase (15.21%) and dehydrogenase (24.17%) over control in tillering stage of rice monoculture. Regarding soil available nutrients in post harvest soil, application of GLM @ 12.5 t ha-1 along with NPK fertilizers increased the soil available KMnO4–N (10%), Olsen-P (43.31%) and NNH4OAc-K (35.97%) over control. Continuous addition of N alone did not influence available N, instead reduced available N when compared to NPK treatments. INM is the best way of improving soil available nutrients and soil enzymatic activities for sustainable soil health.

References

1. Mazumdar S. P., Kundu D. K., Ghosh D., Saha A. R. and Ghorai A. K. (2014) International J. of Agri. and Food Sci. Tech, 5(4), 297-306.
2. Berzsenyi Z., Gyorffy B. and Lap D.Q. (2000) European Journal of Agronomy, 13, 225-244.
3. Nannipieri P. and Badalucco L. (2003) Hand book of Processes and Modeling in the Soil-Plant System. Haworth Press, Binghamton, NY, pp. 57-82.
4. Masto R. E., Chhonkar P. K., Singh D. and Patra A. K. (2006) Soil Biol. Biochem, 38,1577-1582.
5. Tejada M., Benítez C., Gómez I. and Parrado J. (2011) Applied Soil Ecology, 49, 11-17.
6. Tate R.L. (1995) Soil Microbiology. John Wiley & Sons. Inc. New York. 398 p.
7. Badiane N. N. Y., Chotte L., Pate E., Masse D. and Rouland C. (2001) Applied Soil Ecology, 18, 229-238.
8. Singh A. K., Chandra N. and Bharati R. C. (2012) Vegetos, 25, 151-156.
9. Stepniewska Z. and Wolinska A. (2005) Int. Agrophysics, 19, 79–83.
10. Subbiah B.V. and Asija G.L. (1956) Curr. Sci, 25, 259-260.
11. Olsen S.R., Cole C.V., Watanable F.S. and Dean L. A. (1954) Estimation of available phosphorus in soils by extraction with sodium carbonate. Circ, U.S. Dept. Agric., pp: 939.
12. Stanford S. and English L. (1949) Agron. J, 41, 446-447.
13. Tabatabai M.A. and Bremner J.M. (1972) J. Soil Biol. Biochem, 4, 479-487.
14. Keeney D.R. and Bremner J.M. (1966) Nature, 211, 892-893.
15. Cassida L.E. Jr., Klein D.A. and Santoro T. (1964) Soil Sci, 98, 371-376.
16. Panse V. G. and Sukhatme P. V. (1967) Statistical methods for agricultural workers. ICAR New Delhi, 2nd Edn. pp: 381.
17. Ed-Haun Chang, Ren-Shih Chung and Yuong How Tsai. (2007) Journal Soil Science and Plant Nutrition, 53(2), 132-140.
18. Ramesh P., Singh M., Panwar N.R., Singh A.B. and Ramana S. (2006) Indian Journal of Agricultural Sciences, 76, 252–254.
19. Gholamreza Heidari., KhosroMohammadi. and Yousef Sohrabi (2016) Frontiers in Plant Science, 7,1-8.
20. Mandal A., Patra A.K., Singh D., Swarup A. and Masto R.E. (2007) Bioresource Technol, 98, 3585–3592.
21. Faissal A., Ouazzani N., Parrado J. R., Dary M., Manyani H., Morgado, B. R., Barragan M.D. and Mandi L. (2017) Saudi journal of biological sciences, 24(6), 1437–1443.
22. Saha S., Prakash V., Kundu S., Kumar N. and Mina B.L. (2008) Europ. J. Soil Bio, 44, 309-315.
23. Mohammadi K., Ghalavand A., Aghaalikhani M., Heidari G., Shahmoradi B. and Sohrabi Y. (2011) Australian Journal of Crop Science, 5, 1261-1268.
24. Akca M.O. and Namli. A. (2015) Eurasian Journal of Soil Science, 4, 161-168.
25. Watts D. B., Allen T.H., Feng Y. and Prior S.A. (2010) Soil Sci, 175, 474-486.
26. Xie W., Zhou J., Wang H., Chen X., Lu Z., Yu J. and Chen X. (2009) Agriculture, Ecosystems & Environment, 129, 450-456.
27. Munoz Romero V., Benitez-Vega J., Lopez-Bellido R.J., Fontan J.M. and Lopez-Bellido L. (2010) Plant soil, 326, 97-107.
28. Macci C., Doni S., Peruzzi E., Masciandro G., Mennone C. and Ceccanti B. (2012) Journal of Environmental Management, 95, 215-222.
29. Huang Q.R., Hu F., Huang S., Li H.X., Yuan Y.H., Pan G.X. and Zhang W.J. (2009) Pedosphere, 19, 727–734.
30. Sharma M.P., Bali P. and Gupta J.P. (2003) Annals of Agri. Res, 24(1) 91- 94.
31. Kas K., Muhlbachova G., Kusa H. and Pechova M. (2016) Plant Soil Environ, 62(12), 558–565.
32. Bhattacharyya R., Chandra S., Singh R., Kundu S., Srivastva S. and Gupta H. (2007) Soil Till. Res, 94, 386–396.
33. Hundal H.S., Dhillon N.S. and Dev G. (1992) Indian J Soil Sci Soc, 40, 76–81.
34. Bah A.R., Zaharah A.R. and Hussin A. (2006) Commun Soil Sci Plant Anal, 37, 2077–2093.
35. Srilatha M., Rao P.C., Sharma S.H.K., Bhanu K. and Rekha (2013) Journal of Rice Research, 6(2), 45-53.
36. Sharma R.P. and Verma T.S. (2001) Journal of the Indian Society of Soil Science, 49, 407–412.