IN SILICO SCREENING AND IDENTIFICATION OF POTENT ANTIPROTOZOAL DRUGS AGAINST AQUAPORIN PROTEIN OF NOSEMA SPECIES INFECTING SILKWORM AND HONEY BEE

K.N. MADHUSUDHAN1*, M. ROHITH GOWDA2, R. SUMATHY3, S.M. MOORTHY4, A.V. MARY-JOSEPHA5, S.M. HUKKERI6, R.S. TEOTIA7, V. SIVAPRASAD8
1Molecular Biology and Bioinformatics Laboratory, Central Sericultural Research and Training Institute, Central Silk Board, Srirampura, Mysuru, 570008, Karnataka, India
2Molecular Biology and Bioinformatics Laboratory, Central Sericultural Research and Training Institute, Central Silk Board, Srirampura, Mysuru, 570008, Karnataka, India
3Molecular Biology and Bioinformatics Laboratory, Central Sericultural Research and Training Institute, Central Silk Board, Srirampura, Mysuru, 570008, Karnataka, India
4Molecular Biology and Bioinformatics Laboratory, Central Sericultural Research and Training Institute, Central Silk Board, Srirampura, Mysuru, 570008, Karnataka, India
5Molecular Biology and Bioinformatics Laboratory, Central Sericultural Research and Training Institute, Central Silk Board, Srirampura, Mysuru, 570008, Karnataka, India
6Molecular Biology and Bioinformatics Laboratory, Central Sericultural Research and Training Institute, Central Silk Board, Srirampura, Mysuru, 570008, Karnataka, India
7Molecular Biology and Bioinformatics Laboratory, Central Sericultural Research and Training Institute, Central Silk Board, Srirampura, Mysuru, 570008, Karnataka, India
8Molecular Biology and Bioinformatics Laboratory, Central Sericultural Research and Training Institute, Central Silk Board, Srirampura, Mysuru, 570008, Karnataka, India
* Corresponding Author : kn.madhubiotech@gmail.com

Received : 11-12-2019     Accepted : 17-03-2019     Published : 30-03-2019
Volume : 11     Issue : 3       Pages : 1485 - 1490
Int J Microbiol Res 11.3 (2019):1485-1490

Keywords : Nosema, Silkworm, Honeybee, Aquaporins, Antiprotozoan drugs
Academic Editor : Dr R S Umakanth
Conflict of Interest : None declared
Acknowledgements/Funding : Authors are thankful to Molecular Biology and Bioinformatics Laboratory, Central Sericultural Research and Training Institute, Central Silk Board, Srirampura, Mysuru, 570008, Karnataka
Author Contribution : All authors equally contributed

Cite - MLA : MADHUSUDHAN, K.N., et al "IN SILICO SCREENING AND IDENTIFICATION OF POTENT ANTIPROTOZOAL DRUGS AGAINST AQUAPORIN PROTEIN OF NOSEMA SPECIES INFECTING SILKWORM AND HONEY BEE." International Journal of Microbiology Research 11.3 (2019):1485-1490.

Cite - APA : MADHUSUDHAN, K.N., ROHITH GOWDA, M., SUMATHY, R., MOORTHY, S.M., MARY-JOSEPHA, A.V., HUKKERI, S.M., TEOTIA, R.S., SIVAPRASAD, V. (2019). IN SILICO SCREENING AND IDENTIFICATION OF POTENT ANTIPROTOZOAL DRUGS AGAINST AQUAPORIN PROTEIN OF NOSEMA SPECIES INFECTING SILKWORM AND HONEY BEE. International Journal of Microbiology Research, 11 (3), 1485-1490.

Cite - Chicago : MADHUSUDHAN, K.N., M. ROHITH GOWDA, R. SUMATHY, S.M. MOORTHY, A.V. MARY-JOSEPHA, S.M. HUKKERI, R.S. TEOTIA, and V. SIVAPRASAD. "IN SILICO SCREENING AND IDENTIFICATION OF POTENT ANTIPROTOZOAL DRUGS AGAINST AQUAPORIN PROTEIN OF NOSEMA SPECIES INFECTING SILKWORM AND HONEY BEE." International Journal of Microbiology Research 11, no. 3 (2019):1485-1490.

Copyright : © 2019, K.N. MADHUSUDHAN, et al, Published by Bioinfo Publications. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

Abstract

The Microsporidian diseases are becoming major constraint for the production of silkworm and honeybees. The diseases are causing considerable yield loss to sericulture and apiculture industry. At present, no proper protozoan disease management strategies are available. Hence, there is a need for identification and screening of pathogen protein targeted drugs for the containment of diseases in rearing condition. In the present study, the different available drugs were screened against the active sites of aquaporins of Nosema bombycis and Nosema cerenae by using different in silico methods. Three dimensional structures of aquaporins of N. bombycis and N. cerenae were elucidated by using protein modelling tools. The active sites of the proteins were identified by using CASTp server. The docking between the drugs and active site of aquaporins was carried out by using Auto Dock Vina. The interaction between drugs and active site was visualized by using Chimera. Based on the results of the present study the existing antiprotozoan drugs viz., paramomycin sulfate, pentamidine, quinapyramine and proguanil can be used as potent drugs that can block the active sites of aquaporin proteins of both Nosema species.

References

1. Pan G., Bao J., Ma Z., Song Y., Han B., Ran M., Li C., Zhou Z. (2018) Dev Comp Immunol 83,104-113.
2. Berman H.M., Battistuz T., Bhat T.N., Bluhm W.F., Bourne, P.E., Burkhardt K., Feng Z., Gilliland G.L., Iype L., Jain S., Fagan P., Marvin J., Padilla .Ravichandran V., Schneider B., Thanki N, Weissig H, Westbrook JD, Zardecki C (2002) Acta Crystallogr D Biol Crystallogr 58(Pt 6 No 1), 899-907.
3. Nageli C. (1857) Bot. Ztg, 15,760-761.
4. Dunn A.M., Terry R.S., Smith J.E. (2001) Adv Parasitol 48,57-100.
5. Cornman R.S., Chen Y.P., Schatz M.C., Street C., Zhao Y., Desany B., Egholm M., Hutchison S., Pettis J.S., Lipkin W.I., Evans J.D. (2009) PLoS Pathog 5(6),e1000466.
6. Aufauvre J., Biron D.G., Vidau C., Fontbonne R., Roudel M., Diogon M., Viguès B., Belzunces L.P., Delbac F., Blot N. (2012) Sci Rep 2,326.
7. Doublet V., Labarussias M., de Miranda J.R., Moritz R.F., Paxton R.J. (2015) Environ Microbiol 17(4),969-83.
8. Undeen A.H. (1990) J Theor Biol 142(2), 223–35.
9. Undeen A.H., Frixione E. (1990) J Protozool 37(6), 561–67.
10. Undeen A.H., Vander Meer R.K. (1990) J Protozool 37(3), 194–99.
11. Kudo R. (1918) J Parasitol 4(4),141-47.
12. Oshima K. (1937) Parasitology 29(2),220-24.
13. Lom J., Vavra J. (1963) Acta Protozool 1, 81-92.
14. Frixione E., Ruiz L., Santillán M., de Vargas L.V., Tejero J.M., Undeen A. H. (1992) Cell motility and the cytoskeleton 22(1),38-50.
15. Weidner E., Byrd W. (1982) J Cell Biol 93(3),970-75.
16. Frixione E., Ruiz L., Cerbon J., Undeen A.H. (1997) J Eukaryot Microbiol. 44(2),109-16.
17. Chen G., Wang W., Chen H., Dai W., Peng X., Li X., Tang X., Xu L., Shen Z. (2017) PloS one 12(7),e0181703.
18. Chen G., Zhang Z., Shang R., Qi J., Zhang Y., Tang S., Shen Z. (2018) Parasitol Res 117(11),3473-79.
19. Kim S., Thiessen P.A., Bolton E.E., Chen J., Fu G., Gindulyte A., Han L., He J., He S., Shoemaker B.A., Wang J., Yu B., Zhang J., Bryant S.H. (2016) Nucleic Acids Res 44(D1),D1202-13.
20. O'Boyle N.M., Banck M., James C.A., Morley C., Vandermeersch T., Hutchison G.R. (2011) J Cheminform 3,33.
21. Pundir S., Martin M.J., O’Donovan C. (2017) Methods Mol. Biol 1558,41-55
22. Gasteiger E., Hoogland C., Gattiker A., Duvaud S., Wilkins M.R., et al. (In) John M. Walker (ed) (2005) The Proteomics Protocols Handbook, Humana Press 571-607.
23. Geourjon C., Deléage G. (1995) Comput Appl Biosci 11, 681-84.
24. Krogh A., Larsson B., von Heijne G., Sonnhammer E.L. (2001) J Mol Biol 305(3), 567-80.
25. Webb B., Sali A. (2016) Curr Protoc Bioinformatics. 54, 5.6.1-5.6.37.
26. Shen M.Y., Sali A. (2006) Protein Sci. 15(11),2507-24.
27. Tian W., Chen C., Lei X., Zhao J., & Liang J. (2018) Nucleic Acids Res 46(W1),W363-W367.
28. Morris G.M., Huey R., Lindstrom W., Sanner M.F., Belew R.K., Goodsell D.S., Olson A.J. (2009) J Comput Chem 30(16), 2785-91.
29. Trott O., Olson A.J. (2010) J Comput Chem. 31(2),455-61.
30. Pettersen E.F., Goddard T.D., Huang C.C., Couch G.S., Greenblatt D.M., Meng E.C., Ferrin T.E. (2004) J Comput Chem. 25(13),1605-12.
31. Dall D.J. (1983) J Theor Biol 105(4),647-59.
32. Fox K.R., Sansom C.E., Stevens M.F. (1990) FEBS Lett. 266(1-2),150-54.
33. Desportes I., Le Charpentier Y., Galian A., Bernard F., Cochand-Priollet B., Lavergne A., Ravisse P., Modigliani R. (1985) J Protozool., 32(2),250-54.
34. Weber R., Bryan R.T., Schwartz D.A., Owen R.L. (1994) Clin Microbiol Rev 7(4),426-61.