PHYLOGENETIC ANALYSIS OF BAMBOOS THROUGH MORPHOLOGICAL AND BIOCHEMICAL PARAMETERS

M.S. BHANDARI1*, R.K. MEENA2, RAMA KANT3, R. KAUSHAL4, S.K. TEWARI5
1Division of Genetics & Tree Improvement, Forest Research Institute, Dehradun, 248 195, India
2Division of Genetics & Tree Improvement, Forest Research Institute, Dehradun, 248 195, India
3Division of Genetics & Tree Improvement, Forest Research Institute, Dehradun, 248 195, India
4Division of Plant Science, Central Soil and Water Conservation and Research and Training Institute, Dehradun, 248 195, India
5Department of Genetics and Plant Breeding, G.B. Pant University of Agriculture and Technology, Pantnagar, 263 145, Uttarakhand, India
* Corresponding Author : maneesh31803@gmail.com

Received : 31-07-2018     Accepted : 27-09-2018     Published : 30-10-2018
Volume : 10     Issue : 10       Pages : 526 - 529
Genetics 10.10 (2018):526-529

Keywords : Cluster analysis, genetic diversity, biochemical parameters, Euclidean Phenogram
Conflict of Interest : None declared
Acknowledgements/Funding : Authors are thankful to National Bamboo Mission, New Delhi, India, for providing financial support. Author also thankful to G.B. Pant University of Agriculture and Technology, Pantnagar, 263 145, Uttarakhand, India
Author Contribution : All authors equally contributed

Cite - MLA : BHANDARI, M.S., et al "PHYLOGENETIC ANALYSIS OF BAMBOOS THROUGH MORPHOLOGICAL AND BIOCHEMICAL PARAMETERS." International Journal of Genetics 10.10 (2018):526-529.

Cite - APA : BHANDARI, M.S., MEENA, R.K., KANT, RAMA, KAUSHAL, R., TEWARI, S.K. (2018). PHYLOGENETIC ANALYSIS OF BAMBOOS THROUGH MORPHOLOGICAL AND BIOCHEMICAL PARAMETERS. International Journal of Genetics, 10 (10), 526-529.

Cite - Chicago : BHANDARI, M.S., R.K. MEENA, RAMA KANT, R. KAUSHAL, and S.K. TEWARI. "PHYLOGENETIC ANALYSIS OF BAMBOOS THROUGH MORPHOLOGICAL AND BIOCHEMICAL PARAMETERS." International Journal of Genetics 10, no. 10 (2018):526-529.

Copyright : © 2018, M.S. BHANDARI, et al, Published by Bioinfo Publications. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

Abstract

Phylogenetic relationships among 14 species of bamboo were established on the basis of morphological and biochemical parameters. Based on the pooled data analysis, Euclidean phenogram classified forteen species into five hierarchical clusters. Cluster IAaa had maximum number of species (7), cluster IAab had four species whereas cluster IAb comprises of Bambusa tulda, cluster IB had Bambusa multiplex and Cluster II had Bambusa vulgaris. The Euclidean distance coefficient was ranged from 0.449 to 2.242. The minimum genetic distance (0.449) was recorded between Melocanna baccifera and Bambusa bambos, while the maximum genetic distance (2.276) was found between Bambusa vulgaris and Bambusa multiplex. The phylogenetic relationships based on the dendrogram and principal component analysis was in accordance with the morphological bamboo classification system.

References

1. Ganesh Ram S., Parthiban, K.T., Senthil Kumar R., Thiruvengadam V. and Paramathma M. (2008) Genetic Resources Crop Evol., 55: 803–809.
2. Kapteyn J. and Simon J.E. (2002) In: Janick J., Whipkey A. (Eds.) Trends in new crops and new uses, ASHS, Press, Alexandria, 509–513.
3. Welsh J. and McClelland M. (1990) Nucleic Acids Res., 18: 7213–7218.
4. Das M., Bhattacharya S., Basak J. and Pal A. (2007) Biologia Plantarum, 51(4): 667-672.
5. Sneath P.H.A. and Sokal R.R. (1973). Numerical taxonomy, Freeman and Co, San Francisco.
6. Rohlf F.J. (2000). NTSYS-pc. Numerical Taxonomy and Multivariate Analysis System, Version 2.2., Exeter Software, Setauket - New York.
7. Nei M. and Li W. (1979). Proc. Nat. Acad. Sci., USA, 79: 5269-5273.
8. Nayak S., Rout G.R. and Das P. (2003) Plant Soil Environ., 49(1): 24–28.
9. Raizada M.B. and Chatterjee R.N. (1956). Indian Forester, 82: 215-218.
10. Bhandari M.S., Kaushal R., Banik R.L. and Tewari S.K. (2015) Indian Forester, 141(3): 265-274.
11. Dasgupta T. and Das P.K. (1991) Indian J. Agril. Res., 25(1): 7-13.
12. Yan W. and Kang M.S. (2003) GGE Biplot Analysis: A Graphical tool for Breeders. Geneticist and Agronomist, University of Guelph, Ontario-Canada.
13. Generoso A.L., Santos J.O., Carvalho V.S., Sacoman N.N. and Rodrigues R. (2016) Rev. Ciênc. Agronômica, Agricultural Engineering, 47(1): 1-9.
14. Gamble J.S. (1896). Bambuseae of British India - Ann. Roy. Bot. Garden, Calcutta.
15. Brown-Guedira G.L., Thompson J.A., Nelson R.L. and Warburton M.L. (2000). Crop Sci., 40: 815-823.
16. Ghosh S., Somkuwar B., Mandi S.S. and Talukdar, N.C. (2012) Asian Journal of Plant Science and Research, 2(4): 478-485.
17. Wang X., Ye X., Zhao L., Dezhu Li., Guo Z. and Zhuang, H. (2017) Sci Rep., 7: 11546.
18. Yang H.Q., Yang J.B., Peng Z.H., Gao J., Yang Y.M., Peng S., Li D.Z. (2008) Molecular Phylogenetics and Evolution, 48: 809–824.
19. Eevera T., Rajandran, K., Saradha S., Lashmi A. (2008) Tree and Forestry Science and Biotechnology, 2(1): 54-56
20. Fisher A.E., Clark L.G. and Kelchner S.A. (2014) Systematic Botany, 39(3): 829-844.
21. Clark L.G., Dransfield S., Triplett J., and Sa´Nchez-Ken J.G. (2007) Aliso: A Journal of Systematic and Evolutionary Botany, 23: 315–332
22. Triplett J.K., Oltrogge K.A. and Clark L.G. (2010) American Journal of Botany, 97(3): 471–492.
23. Kobayashi M. and Furumoto R. (2004) Journal of Phytogeography and Taxonomy, 52: 1-24.
24. Danquah Owusu E., Akromah R., Quashie-Sam S.J., Oduro W., Falk D., Thevathasan N.V. and Gordon A.M. (2012) Agroforest Syst., 86(3), 443–450.