GENETIC DIVERSITY OF MELIA DUBIA USING ISSR MARKERS FOR NATURAL POPULATIONS AND PLANTATIONS

S. RAWAT1, A.N. ARUNKUMAR2, D. ANNAPURNA3, N.N. KARABA4, G. JOSHI5*
1Genetics and Tree Improvement Division, Institute of Wood Science and Technology, 18th Cross Malleswaram, Bengaluru, 560003, Karnataka, India
2Genetics and Tree Improvement Division, Institute of Wood Science and Technology, Bengaluru, 560003, Karnataka, India; Genetics and Tree Improvement Division, Tropical Forest Research Institute, Jabalpur, 482021, Madhya Pradesh, India
3Genetics and Tree Improvement Division, Institute of Wood Science and Technology, 18th Cross Malleswaram, Bengaluru, 560003, Karnataka, India
4Department of Crop Physiology, University of Agricultural Sciences, GKVK, Bengaluru 560 065, Karnataka, India
5Genetics and Tree Improvement Division, Institute of Wood Science and Technology, Bengaluru, 560003, Karnataka, India; Genetics and Tree Improvement Division, Tropical Forest Research Institute, Jabalpur, 482021, Madhya Pradesh, India
* Corresponding Author : geejos@gmail.com

Received : 02-09-2018     Accepted : 17-09-2018     Published : 30-09-2018
Volume : 10     Issue : 9       Pages : 490 - 494
Genetics 10.9 (2018):490-494

Keywords : Melia dubia, ISSR markers, Genetic Diversity, Superior seed sources
Academic Editor : Rekha R Warrier
Conflict of Interest : None declared
Acknowledgements/Funding : Authors are thankful to Karnataka Forest Department and Indian Council of Forestry Research and Education for financial support. Authors are also thankful to the Director and the Group Coordinator of Research, Institute of Wood Science and Technology, 18th Cross Malleswaram, Bengaluru, 560003, Karnataka, India. We sincerely acknowledge Karnataka State Forest Department and farmers for allowing us to visit the forest areas and plantations for this study
Author Contribution : Swati Rawat was involved in sample collection, laboratory work for genetic diversity, data curation, formal analysis, writing original draft. Arunkumar A. N. carried out field work, partial funding acquisition and manuscript reviewing and editing. Annap

Cite - MLA : RAWAT, S., et al "GENETIC DIVERSITY OF MELIA DUBIA USING ISSR MARKERS FOR NATURAL POPULATIONS AND PLANTATIONS." International Journal of Genetics 10.9 (2018):490-494.

Cite - APA : RAWAT, S., ARUNKUMAR, A.N., ANNAPURNA, D., KARABA, N.N., JOSHI, G. (2018). GENETIC DIVERSITY OF MELIA DUBIA USING ISSR MARKERS FOR NATURAL POPULATIONS AND PLANTATIONS. International Journal of Genetics, 10 (9), 490-494.

Cite - Chicago : RAWAT, S., A.N. ARUNKUMAR, D. ANNAPURNA, N.N. KARABA, and G. JOSHI. "GENETIC DIVERSITY OF MELIA DUBIA USING ISSR MARKERS FOR NATURAL POPULATIONS AND PLANTATIONS." International Journal of Genetics 10, no. 9 (2018):490-494.

Copyright : © 2018, S. RAWAT, et al, Published by Bioinfo Publications. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

Abstract

Melia dubia Cav. (Family: Meliaceae) is a deciduous tree species native to India. It is an important plantation species with short rotation and multipurpose uses, highly valued as a pulpwood and plywood. Genetic variation was assessed in eleven natural populations and seven plantations across eight districts of Karnataka comprising 232 samples through 15 ISSR markers. At species level, genetic diversity estimates viz., Percentage polymorphism (94.6), percentage of polymorphic loci (PPL) (98.8), observed number of alleles (Na=1.98), effective number of alleles (Ne= 1.59), Neis gene diversity (H) (0.34±0.15) and Shannons information index (I) (0.51±0.19) were found to be high. In individual populations H ranged from 0.10±0.19 to 0.32±0.18 and I ranged from 0.15±0.26 to 0.47±0.25. Among different natural populations, Bhadravati exhibited the highest level of variability while in plantations Hunsur had maximum variability. Analysis of Molecular Variance showed that much of the genetic variation resided within the populations (68%) than among populations. The dendrogram obtained by using Unweighted Pair- Group method with Arithmetic average did not reflect geographical sub clustering of genetic diversity except for few populations. Based on the genetic variability found, superior seed sources can be identified and tree improvement strategies could be developed for conservation and further improvement of the species.

References

1. Parthiban K.T., Bharathi A.K., Seenivasan R., Kamala K. and Rao M.G. (2009) Asia-Pacific Agroforestery Newsletter, 34, 3-4.
2. Neginhal S.G. (2004) Forest Trees of South India. pp. 447. Navbharath Press, Bangalore.
3. Pearson R.S. and Brown H.P. (1932) Commercial timbers of India. Calcutta, Government of India, Central Publication Branch, pp. 600.
4. Chauhan S. and Kumar Arun A.N. (2014) Journal of Indian Academy of Wood Science, 11, 25-32.
5. Anand B., Devagiri G.M., Maruti G., Vasudev H. S. and Anil K.K. (2012) International Journal of Life Science, 1(3), 59-63.
6. Manjunatha, K.B. (2007) My Forest, 43, 455-458.
7. Nair K.K.N., Mohanan C. and Mathew G. (2005) Bios et Forest des Tropiques, 285, 17-23.
8. Johar V., Dhillon R. S., Bangarwa K.S., Ajit and Handa A.K. (2015) Indian Journal of. Agroforestry, 17(1), 62-67.
9. Meyer W., Mitchell T.G., Freedman E.Z. and Vilgays R. (1993) Journal of Clinical Microbiology, 31, 2274-2280.
10. Gupta M., Chyi Y.S., Romero-Severson J. and Owen J.L. (1994) Theoretical and Applied Genetics, 89, 998¬-1006.
11. Wu K.S., Jones R., Danneberger L. and Scolnik P.A. (1994) Nucleic Acids Research,22, 3257-3258.
12. Zietkiewicz E., Rafalski A. and Labuda D. (1994) Genomics, 20, 176-183.
13. Wang X., Yang R., Feng S., Hou X., Zhang Y., Li Y. and Ren Y. (2012) PLoS One,7, e51667.
14. Shafiei-Astani B., Ong A.H.K., Valdiani A., Tan S.G., Yong C.S.Y., Ahmady F., Alitheen N.B., Ng W.L. and Kaur T. (2015) Gene, 571, 107-116.
15. Shen J., Ding X., Liu D., Deng G., He J., Li X., Tang F. and Chu B. (2006) Biol. Pharm. Bull. 29, 420-422.
16. Iruela M., Rubio J., Cubero J. I., Gil J. and Millan T. (2002) Phylogenetic analysis in the genus Cicer and cultivated chickpea using RAPD and ISSR markers. Theoretical and Applied Genetics, 104, 643-651.
17. Rawat S., Joshi G., Annapurna D., Arunkumar A.N. and Karaba N.N. (2016) American Journal of Plant Science, 7, 437-445.
18. Nei M. (1973) Proceedings of the National Academy of Sciences,USA,70, 3321-3323.
19. Nei M. (1978) Genetics, 89, 583-590.
20. Yeh F.C., Yang R.C. and Boyle T. (1997) POPGENE, Software Microsoft window-based freeware for population genetic analysis. University of Alberta, Edmonton, Alta.
21. Excoffier L., Smouse P.E. and Quattro J. M. (1992) Genetics, 131,479-491.
22. Ranjbarfard A., Saleh G., Abdullah N.A.P. and Kashiani P. (2014) Australian Journal of Crop Science, 8, 9-17.
23. Lu Z., Wang Y., Peng Y., Korpelainen H. and Li C. (2006) Plant Science,170, 407-212.
24. Mahalakshmi V., Aparna P., Ramadevi S. and Ortiz R. (2002) Electronic Journal of Biotechnology, 15, 233-242.
25. Ranade S.A. and Farooqui N. (2002) Molecular Biology Today,3(1), 1-10.
26. Ansari S.A., Narayanan C., Wali S.A., Kumar R., Shukla N., Rahangdale S.K. (2012) Annals of Forest Research, 55(1), 11-23.
27. Sheng Y., Zheng W., Pei K. and Ma K. (2005) Annals of Botany,96, 245-252.
28. Tian C., Lei Y., Shi S., Nan P., Chen J. and Zhong Y. (2004) New Forest, 27, 229-237.
29. Dhillon R.S., Mohapatra T., Singh S., Boora K.S. and Singh K. (2007) Indian Journal of. Biotechnoogy, 6, 519-524.
30. Yulianti S.I.Z., Wijayanto N., Darma I.T. and Syamsuwida D. (2011) Biodiversitas, 12, 64-69.
31. Gillies A.C.M., Navarro C., Lowe A.J., Newton A.C., Hernandez M., Wilson J. and Cornelius J.P. (1999) Heredity, 83(6), 722-732.
32. Naik D., Singh D., Vartak V., Paranjpe S. and Bhargava S. (2009) New Forest ,38, 99-115.
33. Rout G.R., Sahoo D.B. and Aparajita S. (2008) Crop Breeding and Applied Biotechnology, 9, 268-273.
34. Yiing T.S., Fu C.S., Seng H.W. and Ling P.S. (2014) Advances in Applied Science Research, 5, 458-463.
35. Wachira F.N., Tanaka J. and Takeda Y. (2001) The Journal of Horticultural Science and Biotechnology, 76, 557-563.
36. Woo L.S., Hoon Y.B., Don H.S., Ho S.J. and Joo L.J. (2008) Annals of Forest Science, 65, 302.
37. Sharma S.K., Kumar S., Rawat D., Kumaria S., Kumar A. and Rao S.R. (2011) Biochemical Systematics and Ecology, 39, 9-13.
38. Hamrick J.L. (1994) Proceedings of the International Symposium on Genetic Conservation and Production of Tropical Forest Tree, Seed ASEAN-Canada Forest Tree Seed Centre Project, Muak-Lek, Saraburi, Thailand, 1-9.
39. Moreira P.A., Brandao M.M., Araujo N.H., Oliveira D.A. and Fernandes G.W. (2015) Flora, 210, 40-46.
40. Giustina L.D., Luz L.N., Vieira F.S., Rossi F.S., Lopes C.R.A.S., Pereira T. N.S. and Rossi A.A.B. (2014) Genetics and Molecular Research, 13(2), 3510-3519.
41. Josiah C.C., George D.O., Eleazar O.M. and Nyamu W.F. (2008) African Journal of Biotechnology, 7(14), 2333-2340.