EXPRESSION PROFILING OF ZINC TRANSPORTER GENES IN TOMATO GROWN UNDER DIFFERENT CONCENTRATIONS OF ZINC

R.M.BASAVARAJESHWARI1, R. YAMUNARANI2, V. RAMEGOWDA3, K.N. GEETHA4, A.G. SHANKAR5*
1Division of Plant Physiology and Biochemistry, ICAR-Indian Institute of Horticultural Research, Hessaraghatta lake post, Bengaluru, 560089, Karnataka, India
2Department of Crop Physiology, University of Agricultural Sciences, GKVK, Bengaluru, 560065, Karnataka, India
3Department of Crop Physiology, University of Agricultural Sciences, GKVK, Bengaluru, 560065, Karnataka, India
4Department of Agronomy, University of Agricultural Sciences, GKVK, Bengaluru, 560065, Karnataka, India
5Department of Crop Physiology, University of Agricultural Sciences, GKVK, Bengaluru, 560065, Karnataka, India
* Corresponding Author : ambara8@hotmail.com

Received : 07-06-2018     Accepted : 16-06-2018     Published : 30-06-2018
Volume : 10     Issue : 6       Pages : 1252 - 1255
Int J Microbiol Res 10.6 (2018):1252-1255
DOI : http://dx.doi.org/10.9735/0975-5276.10.6.1252-1255

Keywords : Zinc transporters, zinc deficiency, biofortification, differential expression and ZIP genes
Academic Editor : Vinod S Kukanur
Conflict of Interest : None declared
Acknowledgements/Funding : The authors wish to thank Department of Crop Physiology, University of Agricultural Sciences, GKVK, Bengaluru, 560065, Karnataka for providing facilities to carry out the experiment.
Author Contribution : All author equally contributed

Cite - MLA : R.M.BASAVARAJESHWARI, et al "EXPRESSION PROFILING OF ZINC TRANSPORTER GENES IN TOMATO GROWN UNDER DIFFERENT CONCENTRATIONS OF ZINC." International Journal of Microbiology Research 10.6 (2018):1252-1255. http://dx.doi.org/10.9735/0975-5276.10.6.1252-1255

Cite - APA : R.M.BASAVARAJESHWARI, YAMUNARANI, R., RAMEGOWDA, V., GEETHA, K.N., SHANKAR, A.G. (2018). EXPRESSION PROFILING OF ZINC TRANSPORTER GENES IN TOMATO GROWN UNDER DIFFERENT CONCENTRATIONS OF ZINC. International Journal of Microbiology Research, 10 (6), 1252-1255. http://dx.doi.org/10.9735/0975-5276.10.6.1252-1255

Cite - Chicago : R.M.BASAVARAJESHWARI, R. YAMUNARANI, V. RAMEGOWDA, K.N. GEETHA, and A.G. SHANKAR. "EXPRESSION PROFILING OF ZINC TRANSPORTER GENES IN TOMATO GROWN UNDER DIFFERENT CONCENTRATIONS OF ZINC." International Journal of Microbiology Research 10, no. 6 (2018):1252-1255. http://dx.doi.org/10.9735/0975-5276.10.6.1252-1255

Copyright : © 2018, R.M.BASAVARAJESHWARI, et al, Published by Bioinfo Publications. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

Abstract

Zinc is an important micronutrient required for various biological processes in plants and animals. To improve zinc uptake of plants it is essential to understand the molecular and physiological mechanisms underlying zinc uptake process. Hence, in the present study expression analysis of zinc transporter genes and zinc accumulation in tomato at three different zinc treatments was assessed. Expression profiles showed LeZIP1, LeZIP3, LeZIP5 and LeZIP6 as low zinc responsive zinc transporter genes and LeZIP2 as a high zinc responsive gene. Quantitative real time expression analysis showed 1.5 and 1.8 fold decrease in transcript levels of LeZIP2 in excess zinc and deficient zinc treatments, respectively. Estimation of zinc content in leaves and roots of these zinc treated plants showed significant increase in zinc content of zinc deprived plants upon providing moderate zinc. Zinc content in leaves and roots increased with the increase in the external zinc application. Thus, different zinc contents in plant parts could be attributed to differential expression of zinc transporter genes.

References

1. Alloway B. J. (2008) Second edition, IZA and IFA Brussels, Belgium and Paris, France.
2. Welch R.M. (2002) Plant and Soil, 247, 83-90.
3. Stein A.J., Nestel P., Meenakshi J. V. and Qaim M. (2006) Public Health Nutrition, 10 (5), 492-501.
4. Yamunarania R., Geetha G., Ramegowdaa V., Harshavardhan V. T. and Shankar A. G. (2016) The Crop Journal 4, 229-234.
5. Nagarathna T. K., Shankar A. G. and Udayakumar M. (2010) Journal of Agriculture Technology, 6, 171-178.
6. Gregorio G.B., Senadhira D., Htut T. and Graham R.D. (2000) Food Nutrition Bulletin, 21, 382-386.
7. Beebe S., Gonzalez A.V. and Rengifo J. (2000) Food Nutrition Bulletin, 21, 387-391.
8. Basavarjeshwari R.M. (2016) PhD thesis, Department of Crop Physiology, UAS, GKVK Bengaluru.
9. Mathapati B.R., Yamunarani R., Geetha K. N. and Shankar A. G. (2015) International Journal of Bio-resource and Stress Management, 6(3), 396-401.
10. Basavarajeshwari R. M., Yamunarani R., Ramegowda H. V., Geetha, K. N. and Shankar A. G. (2015) Environment and Ecology, 33 (4B), 1955-1959.
11. Yamunarani R., Venkategowda R., Jagadish P., Govind G., Reddy R. H., Makarla, U. and Guligowda S. A. (2013) Plant Biotechnology Reports, 7, 309-319.
12. Lee S. and An G. (2009) Plant Cell Environment, 32,408–416.
13. Grotz N., Fox T., Connolly E., Park W., Guerinot M. L. and Eide, D. (1998) Proceedings of the National Academy of Sciences, 95, 7220-7224.
14. Guerinot M. L. (2000) Biochimica et Biophysica Acta, 1465, 190-198.
15. Vert G., Briat J. F. and Curie C. (2001) The Plant Journal, 26, 181-189.
16. Moreau S., Thomson R. M., Kaiser B. N., Trevaskis B., Guerinot M. L., Udvardi M. K., Puppo A. and Day D. A. (2002) Journal of Biological Chemistry, 15, 4738–4746.
17. Datta K., Schmidt A. and Marcus A. (1989) Plant Cell, 1, 945-952.
18. Malik N. J., Chamon A. S., Mondol M. N., Elahi S. F. and Faiz S. M. A. (2011) Journal of the Bangladesh Association of Young Researchers (JBAYR), 1(1), 79-91.
19. Ali M. R., Mehrajb H. and Jamal Uddinc A. F. M. (2015) Journal of Bioscience and Agriculture Research, 6(1), 512-517.
20. Hanan E. l. and Said D. (2008) Academic Journal of Plant Sciences, 1 (1), 05-11.
21. Lasat M. M., Pence N. S., Garvin D. F. Ebbs S. D. and Kochian L.V. (2000) Journal of Experimental Botany, 51, 71-79.
22. Pence N. S., Larsen P. B., Ebbs S. D., Letham D. L., Lasat M. M., Garvin D. F., Eide D. and Kochian L. V. (2000) Proceedings of the National Academy of Sciences, 97, 4956–4960.
23. Grass G., Wong M. D., Rosen B. P., Smith R. L. and Rensing C. (2002) Journal of Bacteriology, 184, 864–866.
24. Zhao H. and Eide D. (1996) The Journal of Biological Chemistry, 271, 23203–23210.
25. Gaither L. A. and Eide D. J. (2001) Biometals, 14, 251–270.
26. Wintz H., Fox T., Wu Y. Y., Feng V., Chen W., Chang H. S., Zhu T. and Vulpe C. (2003) Journal of Biological Chemistry, 28, 47644-47653.
27. Lee S., Kim S., Lee J., Guerinot M. and AnG. (2010) Molecules and Cells, 29,551–558.
28. Suzuki M., Bashir K., Inoue H., Takahashi M., Nakanishi H. and Nishizawa N. (2012) Rice, 5, 1-8.
29. Ramesh S. A., Shin R., Eide D. J. and Schachtman D. P., (2003) Plant Physiology, 133,126-134.
30. Ramesh S. A., Choimes S. and Schachtman D. P. (2004) Plant Molecular Biology, 54, 373–385.
31. Ishimaru Y., Bashir K. and Nishizawa N. (2011) Rice, 4, 21-27.
32. Chen W. R., Feng Y. and Chao Y. E. (2008) Russian Journal of Plant Physiology, 55, 400-409.