IMPACT OF HIGH TEMPERATURE GRADIENTS ON THE PHYSIOLGICAL AND BIOMOLECULAR CHANGES IN THE TROPICAL TASAR SILKWORM Antheraea mylitta D

G. LOKESH1*, GARIMA MADHARIYA2, A.K. SRIVASTAVA3, P.K. KAR4, P.P. SRIVASTAVA5, A.K. SINHA6, ALOK SAHAY7
1Central Sericultural Germplasm Resources Centre, Central Silk Board, Hosur, 635 109, India
2Department of Biotechnology, Govt. V.Y.T. Post Graduate College, Durg, Chhattisgarh, 491001, India
3S S Jain Subodh P G College, Jaipur, 302 004, Rajasthan, India
4Central Tasar Research & Training Institute, Central Silk Board, Ranchi, 835303, Jharkhand, India
5Central Tasar Research & Training Institute, Central Silk Board, Ranchi, 835303, Jharkhand, India
6Central Tasar Research & Training Institute, Central Silk Board, Ranchi, 835303, Jharkhand, India
7Central Tasar Research & Training Institute, Central Silk Board, Ranchi, 835303, Jharkhand, India
* Corresponding Author : lokesh10csb@gmail.com

Received : 18-05-2018     Accepted : 26-05-2018     Published : 30-05-2018
Volume : 10     Issue : 5       Pages : 420 - 424
Genetics 10.5 (2018):420-424
DOI : http://dx.doi.org/10.9735/0975-2862.10.5.420-424

Keywords : Antheraea mylitta, temperature stress, Proteins, catalase, tropical tasar
Conflict of Interest : None declared
Acknowledgements/Funding : Author thankful to Central Tasar Research & Training Institute, Central Silk Board, Ranchi, 835303, Jharkhand, India
Author Contribution : All author equally contributed

Cite - MLA : LOKESH, G., et al "IMPACT OF HIGH TEMPERATURE GRADIENTS ON THE PHYSIOLGICAL AND BIOMOLECULAR CHANGES IN THE TROPICAL TASAR SILKWORM Antheraea mylitta D." International Journal of Genetics 10.5 (2018):420-424. http://dx.doi.org/10.9735/0975-2862.10.5.420-424

Cite - APA : LOKESH, G., MADHARIYA, GARIMA, SRIVASTAVA, A.K., KAR, P.K., SRIVASTAVA, P.P., SINHA, A.K., SAHAY, ALOK (2018). IMPACT OF HIGH TEMPERATURE GRADIENTS ON THE PHYSIOLGICAL AND BIOMOLECULAR CHANGES IN THE TROPICAL TASAR SILKWORM Antheraea mylitta D. International Journal of Genetics, 10 (5), 420-424. http://dx.doi.org/10.9735/0975-2862.10.5.420-424

Cite - Chicago : LOKESH, G., GARIMA MADHARIYA, A.K. SRIVASTAVA, P.K. KAR, P.P. SRIVASTAVA, A.K. SINHA, and ALOK SAHAY. "IMPACT OF HIGH TEMPERATURE GRADIENTS ON THE PHYSIOLGICAL AND BIOMOLECULAR CHANGES IN THE TROPICAL TASAR SILKWORM Antheraea mylitta D." International Journal of Genetics 10, no. 5 (2018):420-424. http://dx.doi.org/10.9735/0975-2862.10.5.420-424

Copyright : © 2018, G. LOKESH, et al, Published by Bioinfo Publications. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

Abstract

Tasar silkworm Antheraea mylitta D reared in tropical regions of the country and produce commercial tasar cocoons, which experiences extreme thermal condition during its life cycle. To perceive the thermo-tolerant characters of A. mylitta, in the present study, the tasar cocoons with live pupae were exposed/treated with high temperature in three different ranges 40-45°C, 46-50°C and 50-55°C in different time intervals. The treated pupae were collected, and the hemolymph and midgut tissues were examined for the changes in the protein and catalase activity through quantitative assay and electrophoresis. The experiment reveals a positive correlation of temperature and the protein concentration in the hemolymph and fatbody. Also, Catalase activity showed higher in thermal stress conditions compared to the control. The acute stress (51-55°C) causes significant decrease in Catalase activity in the fat body of both males and female pupa. There are significant changes were observed in the electrophoretic protein profile with additional protein bands of 40 kDa and 70 kDa presumed as heat shock related proteins. Similarly, additional bands CAT3 & CAT4 compared to control samples were observed in the catalase profile. The physiological changes observed in the tasar silkworm on high temperature treatment may be used as an indicator to identify the high temperature tolerant characters in the tropical tasar silkworms

References

1. Hansda G., Manohar Reddy R., Sinha M.K., Ojha N.G. and Vijaya Prakash N.B. (2008) Intl J. Indus. Entomology, 17(2), 169-172.
2. Sinha B.R.R.P. and Srivastava A.K. (2004) Perspectives in Cytology and Genetics, 11, 243-249.
3. Suryanarayana N., Kumar R. and Gargi (2005) Central Tasar Research and Training Institute, CSB, India.
4. Suryanarayana N., Srivastava A.K. (2005) Central Tasar Research and Training Institute, CSB, India.
5. Hazel J.R. (1995) Annu. Rev. Physiol., 57, 19-42
6. Willmer C. W., Stone G. and Johnston I. (2004) Blackwell Science,
7. Pandey J.P., Mishra P.K., D Kumar, Singh B.M.K. and Prasad B. C. (2010) Research Journal of Immunology, 3(2), 169-177.
8. Lokesh G., Kar P.K., Srivastava A.K, Saloni Swaroopa, Sinha M.K. (2012) Int. J. Indst. Entomol., 24(1), 69-74.
9. Jena K.B., Kar P. K., Zeba Kausar and Babu C. S. (2013) Journal of Thermal biology, 38,199-204.
10. Blacklock B.J. and Ryan R.O. (1994) Mol.Bio., 24, 855-873.
11. Tiwary R.K. and Shukla R.S. (2000) Proc. Nat. Aca. Sci. India, 70, 243-254.
12. Chaubey A.K. (2002) Ph.D. thesis VBS Purvanchal University, Jaunpur, India.
13. Schlesinger M. J., Ashburner M. and Tissiers A. (1982) Cold Spring Harbor, New York: Cold Spring Harbor Laboratory.
14. Lindquist S. and Craig E.A. (1988) Annu. Rev. Genet., 22, 661-677.
15. Petersen N. S. (1990) Adv. Genet., 28, 275-296.
16. Casey T. M. (1977) Comp. Biochem. Physiol., 57A, 53-58.
17. Deshaies R.J., Koch B.D., Werner-Washburne M., Craig E.A., Schekman R. (1998) Nature, 332,800-805.
18. Welch W. J. (1991) Curr. Opin. Cell. Biol., 3, 1033-1038.
19. Fittinghoff C.M. and Riddiford L.M. (1990) J. Comp. Physiol., B, 160, 349-356.
20. Kaur P., Kaur G., Bansal M.P. (2006) Reprod. Toxicol., 200, 479-484.
21. Aitken R.J., Roman S.D. (2008) Oxid. Med. Cell Longev., 1(1), 15-24.
22. An M.I. and Choi C.Y. (2010) Comp.Biochem. Physiol., 155, 34-42.
23. Lowry O.H., Rosebrough N. J., Farr A.L. and Randall R. J. (1951) J. Biol. Chem., 193, 267-275.
24. Aebi H. (1984) Method Enzymol., 105, 121-126.
25. Zingales B. (1984) Ed. By Morel C. M. 2nd Edn. Fundacao Oswaldo Cruz, Rio’ de Janeiro, Brazil, 357-363
26. Lokesh G., Bishnu Prasad, Srivastava A.K., Srivastava P.P., Kar P.K. and Sinha M.K. (2014) Intl. Res. J. Biol. Sci., 3(11), 42-46.
27. Staykova T. (2008) J Insect Sci., 8, 1- 8.
28. Joy Omana and Karumathil P Gopinathan (1995) Journal of Biosciences 20(4): 499-513.
29. Singh Anita, Ratnesh Kr Sharma and Bechan Sharma (2010 Insect Physiology, 2, 11-16.
30. Wolfe R Gregory, Donald L. Hendrix, Michael E. Salvucci (1998) Journal of Insect Physiology, 44, 597–603.
31. Shamitha G. and Purushotham Rao A. (2008) Asian J. Exp. Sci., 22(3), 255-260.
32. Forcella M., Berra E., Giacchini R., Parenti P. (2007) Archv Insect Biochem Physiol., 65, 181-194.
33. Ahmad S. and Pardini R.S. (1990). Free Radic. Biol. Med., 8, 401-413.
34. Sohal R.S., Arnold L. & Orr W. C. (1990) Mech. Ageing. Dev., 56, 223-235.
35. Keeley L. L. (1985) In: Kerkut G. A., Gilbert L. I. (Eds.)
36. Kaur P., Ghai N. and Sangha M.K. (2009) African J. of Biotech., 8(4), 619-625.
37. Kumar D., Pandey J.P., Jain J., Mishra P.K., Prasad B.C. (2011) Int. J. Zool. Res., 7(2), 147-155.
38. Fujiwara, Y. and Yamashita O. (1990) Insect. Biochem., 20, 751-759.
39. Kampinga H.H. (1993) Journal of Cell Science, 104, 11-17.
40. Howrelia J. Hongray, Patnaik B.B., Selvanayagam M. and Rajakumar S. (2011) J. Envi.Bio., 32(1), 99-103.
41. Davidson J. F., Whyte B., Bissinger P.H. & Schiestl R.H. (1996) Proc Natl Acad Sci USA, 93, 5116-5121.
42. Maria A.N.J., Ricardo M.C., Maria H.S.G., Jesus A., Suresh Iyer, Allan C., Hector F.T. and Gustov H.G. (1999) Microbiology, 145,3229-3234.