MULTI-PARENT ADVANCED GENERATION INTERCROSS (MAGIC) POPULATION FOR GENOME MAPPING IN PLANT

LINCOLN MANDAL1*, SUNIL KUMAR VERMA2, SAUGATA SASMAL3, ANJU RANI EKKA4, JAWAHAR LAL KATARA5, Anil S. Kotasthane6
1Department of Agriculture and Biotechnology, Indira Gandhi Krishi Vishwavidyalaya, Raipur, Chhattisgarh 492012, India
2Department of Genetics and Plant Breeding, CARS, Bemetara, IGKV, Raipur, 491335, India
3Krishi Vigyan Kendra, Indira Gandhi Krishi Vishwavidyalaya, Raipur, Chhattisgarh 492012, India
4Department of Agriculture and Biotechnology, Indira Gandhi Krishi Vishwavidyalaya, Raipur, Chhattisgarh 492012, India
5Department of Plant Biotechnology, National Rice Research Institute, Cuttack, Odisha, 753006, India
6Indira Gandhi Krishi Vishwavidyalaya, Raipur, Chhattisgarh 492012
* Corresponding Author : lincolndbt@gmail.com

Received : 01-03-2018     Accepted : 12-03-2018     Published : 30-03-2018
Volume : 10     Issue : 2       Pages : 343 - 345
Genetics 10.2 (2018):343-345
DOI : http://dx.doi.org/10.9735/0975-2862.10.2.343-345

Keywords : MAGIC population, Precise QTLs mapping, Linkage map construction
Conflict of Interest : None declared
Acknowledgements/Funding : Author thankful to Indira Gandhi Krishi Vishwavidyalaya, Raipur, Chhattisgarh 492012. Author also thankful to National Rice Research Institute, Cuttack, Odisha, 753006
Author Contribution : All author equally contributed.

Cite - MLA : MANDAL, LINCOLN, et al "MULTI-PARENT ADVANCED GENERATION INTERCROSS (MAGIC) POPULATION FOR GENOME MAPPING IN PLANT ." International Journal of Genetics 10.2 (2018):343-345. http://dx.doi.org/10.9735/0975-2862.10.2.343-345

Cite - APA : MANDAL, LINCOLN, VERMA, SUNIL KUMAR, SASMAL, SAUGATA, EKKA, ANJU RANI, KATARA, JAWAHAR LAL, Kotasthane, Anil S. (2018). MULTI-PARENT ADVANCED GENERATION INTERCROSS (MAGIC) POPULATION FOR GENOME MAPPING IN PLANT . International Journal of Genetics, 10 (2), 343-345. http://dx.doi.org/10.9735/0975-2862.10.2.343-345

Cite - Chicago : MANDAL, LINCOLN, SUNIL KUMAR VERMA, SAUGATA SASMAL, ANJU RANI EKKA, JAWAHAR LAL KATARA, and Anil S. Kotasthane. "MULTI-PARENT ADVANCED GENERATION INTERCROSS (MAGIC) POPULATION FOR GENOME MAPPING IN PLANT ." International Journal of Genetics 10, no. 2 (2018):343-345. http://dx.doi.org/10.9735/0975-2862.10.2.343-345

Copyright : © 2018, LINCOLN MANDAL, et al, Published by Bioinfo Publications. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

Abstract

The multiparent advanced generation inter-cross (MAGIC) population is one of a new generation emerging mapping population for plant genetics study. They are generally created by intercrossing multiple founder lines over several generations. The MAGIC populations offer an alternative to traditional linkage or association mapping populations by increasing the precision of quantitative trait loci (QTL) mapping resolution and analysis of gene–trait association by taking the advantages of both historical and synthetic recombination. MAGIC offer great potential both for dissecting genomic structure and for improving breeding populations.

References

1. Mackay I.J. and Powell W. (2007) Trends Plant Sci., 12, 53.
2. Cavanagh C., Morell M., Mackay I. and Powell W. (2008) Curr. Opin. Plant Biol., 11, 215–221.
3. Ongom P.O. and Ejeta G. (2018) genomes. Genetics, 8, 331-341.
4. Bandillo N., Raghavan C., Muyco P.A., Sevilla M.A.L., Lobina I.T., Dilla- Ermita C.J., Tung C.W., McCouch S., Thomson M., Mauleon R., Singh R.K., Gregorio G., Redo~na E. and Leung H. (2013) Rice, 6, 11.
5. Mackay I.J., Bansept-Basler P., Barber T., Bentley A.R., Cockram J., Gosman N., Greenland A.J., Horsnell R., Howells R., O’Sullivan D.M., Rose G.A. and Howell P.J. (2014) G3: Genes, Genomes, Genet., 4, 1603–1610.
6. Huang B.E., Verbyla K.L., Verbyla A.P., Raghavan C., Singh V.K., Gaur P., Leung H., Varshney R.K. and Cavanagh C.R. (2015) Theor. Appl. Genet., 128, 999–1017.
7. Rakshit S., Rakshit A. and Patil J.V. (2012) J. Genet., 91, 111–117.
8. Churchill G.A., Airey D.C., Allayee H., Angel J.M., Attie A.D., Beatty J., Beavis W.D., Belknap J.K., Bennett B., Berrettini W., Bleich A., Bogue M., Broman K.W., Buck K.J., Buckler E., Burmeister M., Chesler E.J., Cheverud J.M., Clapcote S., Cook M.N., Cox R.D., Crabbe J.C., Crusio W.E., Darvasi A., Deschepper C.F., Doerge R.W., Farber C.R., Forejt J., Gaile D., Garlow S.J., Geiger H., Gershenfeld H., Gordon T., Gu J., Gu W., de Haan G., Hayes N.L., Heller C., Himmelbauer H., Hitzemann R., Hunter K., Hsu H.C., Iraqi F.A., Ivandic B., Jacob H.J., Jansen R.C., Jepsen K.J., Johnson D.K., Johnson T.E., Kempermann G., Kendziorski C., Kotb M., Kooy R.F., Llamas B., Lammert F., Lassalle J.M., Lowenstein P.R., Lu L., Lusis A., Manly K.F., Marcucio R., Matthews D., Medrano J.F., Miller D.R., Mittleman G., a Mock B., Mogil J.S., Montagutelli X., Morahan G., Morris D.G., Mott R., Nadeau J.H., Nagase H., Nowakowski R.S., O’Hara B.F., Osadchuk A.V., Page G.P., Paigen B., Paigen K., Palmer A., Pan H.J., Peltonen-Palotie L., Peirce J., Pomp D., Pravenec M., Prows D.R., Qi Z., Reeves R.H., Roder J., Rosen G.D., Schadt E.E., Schalkwyk L.C., Seltzer Z., Shimomura K., Shou S., Sillanpää M.J., Siracusa L.D., Snoeck H.W., Spearow J.L., Svenson K., Tarantino L.M., Threadgill D., Toth L.A., Valdar W., de Villena F.P.M., Warden C., Whatley S., Williams R.W., Wiltshire T., Yi N., Zhang D., Zhang M. and Zou F. (2004) Nat. Genet., 36, 1133–1137.
9. Kover P. X., Valdar W., Trakalo J., Scarcelli N., Ehrenreich I.M., Purugganan M.C., Durrant C. and Mott R. (2009) PLoS Genet., 5, e1000551.
10. Huang B.E., George A.W., Forrest K.L., Kilian A., Hayden M.J., Morell M.K. and Cavanagh C.R. (2012) Plant Biotechnol. J., 10,826–839.
11. Rebetzke G.J., Verbyla A.P., Verbyla K.L., Morell M.K. and Cavanagh C.R. (2014) Plant Biotechnol J., 12, 219–230.
12. Gaur P.M., Jukanti A.K. and Varshney R.K. (2012) Agronomy, 2, 199–221.
13. Higgins R.H., Thurber C.S., Assaranurak I. and Brown P.J. (2014) G3 (Bethesda), 4, 1593–1602.
14. Dell’Acqua M., Gatti D. and Pea G. (2015) Genome Biol., 16, 1–23.
15. Sannemann W., Huang B.E., Mathew B. and Léon J. (2015) Mol. Breed., 35, 1–16.
16. Pascual L., Desplat N., Huang B.E., Desgroux A., Bruguier L., Bouchet J.P., Le Q.H., Chauchard B., Verschave P. and Causse M. (2015) Plant Biotechnol. J., 13, 565–577.
17. Wada T., Oku K., Nagano S., Isobe S., Suzuki H., Mori M., Takata K., Hirata C., Shimomura K., Tsubone M., Katayama T., Hirashima K., Uchimura Y., Ikegami H., Sueyoshi T., Obu K-i., Hayashida T. and Shibato Y. (2017) Breeding Science, 67, 370–381.
18. Meng L., Guo L., Ponce K., Zhao X. and Ye G. (2016) The plant genome, 9(2), 1-14.
19. Li D.G., Li Z.X., Hu J.S., Lin Z.X. and Li X.F. (2016) Genetics and Molecular Research, 15(4), gmr15048759.
20. Dhavala C.V.N., Papidandla U.M., Ullagaddi C., Thimmegowda G.C. and Gandra S.V.S. (2017) Not Sci. Biol., 9(3), 392-396.
21. Mathew B., Léon J., Sannemann W. and Sillanpää M. J. (2018) Genetics, 208, 525–536.
22. Darvasi A. and Soller M. (1995) Genetics, 141, 1199–1207.
23. Valdar W., Flint J. and Mott R. (2006) Genetics, 172, 1783–1797.
24. Yamamoto E., Iwata H., Tanabata T., Mizobuchi R., Yonemaru J., Yamamoto T. and Yano M. (2014) BMC Genet., 15, 50.
25. Holland J. (2015) Genome Biol., 16, 163.
26. Li Z., Ye G., Yang M.E.I., Liu Z., Lu D., Mao X., Wu Q. and Li X. (2014) Res. Crops, 15, 28–37.
27. Li X.F., Liu Z.X., Lu D.B., Liu Y.Z., Mao X.X., Li Z.X. and Li H.J. (2013) Euphytica, 192, 77–86.
28. Cockram J., Scuderi A., Barber T., Furuki E., Gardner K.A., Gosman N., Kowalczyk R., Phan H.P., Rose G.A., Tan K.C., Oliver R.P. and Mackay I.J. (2015) G3 genes.genomes.genetics. 5, 2257-2266.
29. Gardner K.A., Wittern L.M. and Mackay I.J. (2016) Plant Biotechnol. J., 14, 1406–1417.