GENE TRAPPING: A POWERFUL TOOL OF FUNCTIONAL GENOMICS TO IDENTIFY NOVEL GENES

KUMARI ANJANI1*, V.K. SHARMA2, HARSH KUMAR3
1Department of Agricultural Biotechnology and Molecular Biology, Dr Rajendra Prasad Central Agricultural University, Pusa, 848125, Bihar
2Department of Agricultural Biotechnology and Molecular Biology, Dr Rajendra Prasad Central Agricultural University, Pusa, 848125, Bihar
3Department of Agricultural Biotechnology and Molecular Biology, Dr Rajendra Prasad Central Agricultural University, Pusa, 848125, Bihar
* Corresponding Author : anjanikumari1234@gmail.com

Received : 29-01-2018     Accepted : 12-02-2018     Published : 28-02-2018
Volume : 10     Issue : 1       Pages : 325 - 332
Genetics 10.1 (2018):325-332
DOI : http://dx.doi.org/10.9735/0975-2862.10.1.325-332

Keywords : Trap vectors, insertional mutagenesis, novel genes, tissue –specific, reporter genes
Conflict of Interest : None declared
Acknowledgements/Funding : The authors wish to express their acknowledgement to Dr. Rajendra Prasad Central Agricultural University, Pusa, Samastipur, Bihar for providing the technical support for compiling this review
Author Contribution : All author equally contributed

Cite - MLA : ANJANI, KUMARI, et al "GENE TRAPPING: A POWERFUL TOOL OF FUNCTIONAL GENOMICS TO IDENTIFY NOVEL GENES." International Journal of Genetics 10.1 (2018):325-332. http://dx.doi.org/10.9735/0975-2862.10.1.325-332

Cite - APA : ANJANI, KUMARI, SHARMA, V.K., KUMAR, HARSH (2018). GENE TRAPPING: A POWERFUL TOOL OF FUNCTIONAL GENOMICS TO IDENTIFY NOVEL GENES. International Journal of Genetics, 10 (1), 325-332. http://dx.doi.org/10.9735/0975-2862.10.1.325-332

Cite - Chicago : ANJANI, KUMARI, V.K. SHARMA, and HARSH KUMAR. "GENE TRAPPING: A POWERFUL TOOL OF FUNCTIONAL GENOMICS TO IDENTIFY NOVEL GENES." International Journal of Genetics 10, no. 1 (2018):325-332. http://dx.doi.org/10.9735/0975-2862.10.1.325-332

Copyright : © 2018, KUMARI ANJANI, et al, Published by Bioinfo Publications. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

Abstract

Gene trapping is a type of insertional mutagenesis that disrupts gene function by the integration of a vector in the intergeneric sequences. It provides an important and unique method for studying the relationship between gene expression and function and a powerful tool to characterize novel genes and analyze their importance in biological phenomena. It is performed with gene trap vectors that simultaneously mutate and report the expression of the endogenous gene at the site of insertion. Based on the component of gene expression cassette which they exploit, trap vectors are classified as: enhancer trap vectors, promoter trap vectors, gene trap vectors, poly A trap vectors and secretory trap vectors. Vectors are introduced in embryonic stem cells in mice and leaves or floral parts in case of plants by electroporation or virus-mediated transformation. The transformed cells are selected on the basis of selectable markers. Insertion events are detected and the trapped lines are established. This technique has been used to identify tissue specific and temporally regulated genes in plants and mice. It proves to be a powerful tool of functional genomics.

References

1. Lee T., Shah C. and Xu E.Y. (2007) Molecular Human Reproduction, 13, 771–779. https://doi.org/10.1093/molehr/gam069.
2. Strassman A., Schnütgen F., Dai Q., Jones J. C., Gomez A. C., Pitstick L., Holton N. E., Moskal R Leslie E. R., Melchner H. V., Beier D.R., and Bjork B. C. (2017) Disease Models and Mechanism, 10(7), 909–922. https://doi: 10.1242/dmm.029561.
3. Yu J. and Ciaudo C. (2017) Scientific Reports, 7, 1-14. doi: 10.1038/srep44736.
4. Gentile A., Alessandro L. D. and Medico E. (2003) Biotechnology and Engineering Reviews, 20, 77-100.
a. https://doi.org/10.1080/02648725.2003.10648038.
5. Kothary R., Clap off, S. Brown A., Campbell R., Peterson A. and Rossant J. (1988) Nature, 335, 435-437.https://doi.org/10.1038/335435a0.
6. Jefferson R. A., Kavanagh' T. A. and Bevan M. W. (1987) The EMBO Journal, 6, 3901 -3907.
7. Sundaresan V., Springer P., Volpe T., Haward S., Jones J.D.G., Dean C., Ma H. and Marttissen R. (1995) Genes and Development, 9, 1797-1810. https://doi.org/10.1101/gad.9.14.1797.
8. Groover A., Fontana J. R., Dupper G., Ma C., Martienssen R., Strauss S. and Meilan R (2004) Plant Physiology, 134, 1742–1751. https://doi.org/10.1104/pp.103.034330.
9. Xiao-hong L., Jian-ping L. U., Jiao-yu W., Hang M. and Fu-cheng L. (2006) Journal of Zhejiang University SCIENCE B, 7, 28-33. https://doi.org/10.1631/jzus.2006.B0028.
10. Sivanandan C., Sujatha T. P., Prasad A. M., Resminath R., Thakare D., Bhat S. R. and Srinivasan R. (2005) Biochemical et Biophysical Acta, 1731, 202–208. https://doi.org/10.1016/j.bbaexp.2005.10.006.
11. Pratibha P., Singh S.K., Sharma I., Kumar R., Srinivasan R, Bhat S.R., Ahuja P.S. and Sreenivasulu Y. (2013) Gene, 524, 22–27. https://doi.org/10.1016/j.gene.2013.04.031.
12. Friedel R. H., Plump A., Lu X., Spilker K., Jolicoeur C., Wong K.,Venkatesh T. R., Yaron A., Hynes M., Chen B. and co-workers (2005) Proceedings of National Academy of Sciences USA, 102, 13188–13193. https://doi.org/10.1073/pnas.0505474102.
13. Stanford W. L., Jason B. Cohn, J. B. and Cordes S.P. (2001) Nature, 2, 756-768.
14. Medico E., Gambarotta G., Gentile A., Comoglio P. M. and Soriano P. (2001) Nature Biotechnology, 19, 579–582. https://doi.org/10.1038/89343.
15. Nakahara M., Tateyama H., Araki M., Nakagata N., Yamamura K. and Araki K. (2013) Mammalian Genome, 24, 228–239.
a. https://doi.org/10.1007/s00335-013-9452-4.
16. Salminen M., Meyer B. I. and Gruss, P. (1998) Developmental Dynamics, 212, 326–333.
a. https://doi.org/10.1002/(SICI)1097-0177(199806)212:2<326::AID-AJA17>3.0.CO;2-1
17. Yamamoto Y.Y., Tsuhara Y., Gohda K., Suzuki K. and Matsui M. (2003) Plant Journal, 35, 273–283. https://doi.org/10.1046/j.1365-313X.2003.01797.x.
18. Shigeoka T., Kawaichi M. and Ishida Y. (2005) Nucleic Acids Research, 33, e20. https://doi.org/10.1093/nar/gni022.
19. Skarnes W. C. (2000) Methods in Enzymology, 328, 592–615. https://doi.org/10.1016/S0076-6879(00)28420-6.
20. Campisi L., Yang Y., Heilig E., Herman B., Cassista, A.J., Allen, D.W., Xiang, H. and Jack T. (1999) Plant Journal, 17, 699-707.
a. https://doi.org/10.1046/j.1365-313X.1999.00409.x.
21. He Y., Tang W., Swain J. D., Green A. L., Jack T. P. and Gan S. (2001) Plant Physiology, 126, 707-716. https://doi.org/10.1104/pp.126.2.707.
22. Sabatini S., Beis D., Wolkenfelt H., Murfett J., Guilfoyle T., Malamy J.,Benfey P., Leyser O., Bechtold N., Weisbeek P. and Scheres B. (1999) Cell, 99, 463–472. https://doi.org/10.1016/S0092-8674(00)81535-4.
23. Topping J.F. and Lindsey K. (1997) Plant Cell, 9, 1713-1725. https://doi.org/10.2307/3870519 https://doi.org/10.1105/tpc.9.10.1713.
24. Plesch G., Kamann E. and Mueller R. B. (2000) Gene, 249, 83–89.
https://doi.org/10.1016/S0378-1119(00)00150-5.
25. Rajani S. and Sundaresan, V. (2001) Current Biology, 11, 1914–1922. https://doi.org/10.1016/S0960-9822(01)00593-0.
26. Springer P.S., McCombie W.R., Sundaresan V. and Martienssen, R.A. (1995) Science, 268, 877–880. https://doi.org/10.1126/science.7754372.
27. Lechner E., Goloubinoff P., Genschik P. and Shen W. H. (2002) Gene, 290, 63–71. https://doi.org/10.1016/S0378-1119(02)00556-5.
28. Filichkin S.A., Wu Q., Busov V., Meilan R., Lanz-Garcia C., Groover A., Goldfarb B., Ma C., Dharmawardhana P., Brunner A. and Strauss S.H. (2006) Plant Science, https://doi.org/10.1016/j.plantsci.2006.03.011.
29. Koo J., Kim Y., Kim J., Yeom M., Lee I. C. and Nam H. G. (2007) Plant Cell Physiology, 48(8), 1121–1131.. https://doi.org/10.1093/pcp/pcm081.
30. Jiang S.Y. and Ramachandran S. (2011) International Journal of Biological Sciences, 7, 28-40.
a. https://doi.org/10.7150/ijbs.7.1037https://doi.org/10.7150/ijbs.7.659 https://doi.org/10.7150/ijbs.7.28
31. Sharma I., Srinivasan R., Ahuja P.S., Bhat S.R. and Sreenivasulu Y. (2015) Plant Molecular Biology and Reproduction, 33, 1404–1412.