GROWTH DYNAMICS OF Pseudomonas putida (NBAII-RPF9) UNDER ABIOTIC STRESS CONDITIONS

K. ASHWITHA1*, R. RANGESHWARAN2
1ICAR - National Bureau of Agricultural Insect Resource, H A Farm Post, Bellary Road, Hebbal, Bangalore, Karnataka 560024
2ICAR - National Bureau of Agricultural Insect Resource, H A Farm Post, Bellary Road, Hebbal, Bangalore, Karnataka 560024
* Corresponding Author : ashwi1986@gmail.com

Received : 21-01-2018     Accepted : 26-01-2018     Published : 30-01-2018
Volume : 10     Issue : 1       Pages : 1005 - 1008
Int J Microbiol Res 10.1 (2018):1005-1008
DOI : http://dx.doi.org/10.9735/0975-5276.10.1.1005-1008

Keywords : Pseudomonas putida, heat stress, salt stress, growth curve, exponential phase, protein profile, HSPs, antagonism
Academic Editor : Parthasarathy Seethapathy
Conflict of Interest : None declared
Acknowledgements/Funding : The authors are grateful to The World Bank and Indian Council for Agricultural Research (ICAR) for funding the research under the National Agricultural Innovative Project (NAIP)
Author Contribution : All author equally contributed

Cite - MLA : ASHWITHA, K. and RANGESHWARAN, R. "GROWTH DYNAMICS OF Pseudomonas putida (NBAII-RPF9) UNDER ABIOTIC STRESS CONDITIONS ." International Journal of Microbiology Research 10.1 (2018):1005-1008. http://dx.doi.org/10.9735/0975-5276.10.1.1005-1008

Cite - APA : ASHWITHA, K., RANGESHWARAN, R. (2018). GROWTH DYNAMICS OF Pseudomonas putida (NBAII-RPF9) UNDER ABIOTIC STRESS CONDITIONS . International Journal of Microbiology Research, 10 (1), 1005-1008. http://dx.doi.org/10.9735/0975-5276.10.1.1005-1008

Cite - Chicago : ASHWITHA, K. and R., RANGESHWARAN. "GROWTH DYNAMICS OF Pseudomonas putida (NBAII-RPF9) UNDER ABIOTIC STRESS CONDITIONS ." International Journal of Microbiology Research 10, no. 1 (2018):1005-1008. http://dx.doi.org/10.9735/0975-5276.10.1.1005-1008

Copyright : © 2018, K. ASHWITHA and R. RANGESHWARAN, Published by Bioinfo Publications. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

Abstract

Experiments were conducted to know the growth variations adopted by Pseudomonas putida (NBAII-RPF 9) an abiotic stress tolerant plant growth promoter and biological control agent. Cell growth and survival was monitored under different time periods with two temperature regimes (25̊ and 45º C) and data on viable cell count was analysed. P. putida (NBAII-RPF9) experienced a delayed lag phase when grown under heat stress as compared to its growth at normal temperature which was complemented by expression of higher whole cell protein concentration. Under heat stress increased protein content was noticed in lag phase. Whole cell protein analysis of P. putida (NBAII-RPF 9) by SDS-PAGE analysis showed expression of proteins ranging between 40KDa to 60KDa which match with molecular weight of major heat stress related proteins like GroEL and DnaK. This supported the fact that various proteins were triggered under stress conditions to ensure its survival.

References

1. Ashwitha K., Rangeshwaran R., Vajid N.V., Sivakumar G., Jalali S.K., Rajalakshmi K. and Manjunath H. (2013) Journal of Biological Control, 27, 319-328.
2. Ball C. (2017) Microbial Biotechnology, 10, 19-21.
3. Bangera M.G. and Thomashow L.S. (1999) Journal of Bacteriology, 181, 3155-3163.
4. Cho Y., Park S, Kim C. and Oh K. (2000) Current Microbiology, 41, 33-38.
5. Duffy B.K. and Defago G. (1999) Applied Environmental Microbiology, 65, 2429–2438.
6. Freeman B.C., Chen C., Yu X., Nielsen X., Peterson., Beattie G.A. (2013) Journal of Bacteriology, 195, 4742– 4752.
7. Gray R.J.H., Witter L.D. and Ordal J. (1973) Applied Microbiology, 26, 78-85.
8. Ito F., Tamiya T., Ohtsu I., Fujimura M. and Fukumori F. (2014) Microbiology Open, 3, 922-936.
9. Keel C., Schnider U., Maurhofer, M., Voisard, C., Laville J., Burger U., Wirthner P., Haas D and Defago G. (1992) Molecular Plant Microbe Interaction, 5, 4–13.
10. Kets E.P.W., Galinski E.A., de Wit M., de Bont J.A.M and Heipieper H.J. (1996) Journal of Bacteriology, 178, 6665– 6670.
11. Kishore K.G., Pande S., Rao, J.N. and Podile A.R. (2005) European Journal of Plant Pathology, 113, 315-320.
12. Mavrodi D.V., Bonsall R.F., Delaney S.M. and Thomashow L.S. (2001) Journal of Bacteriology, 183, 6454–6465.
13. Meenakshisudaram C, Rajendran P, Rao U.A., Mohan V. and Vasudevan R. (2015) International Journal of Current Microbiology and Applied Science, 4, 241-250.
14. Park S.H., Oh K.H. and Kim C.K. (2001) Current Microbiology, 43, 176.
15. Pocard, J., Smith, L. T., Smith, G.M. and Rudulier, D.L. (1994) Journal of Bacteriology, 176, 6877-6884.
16. Prapagdee, B., Kuekulvong, C., and Mongkolsuk, S. (2008) International Journal of Biological Science, 4, 330-337.
17. Ritcher K, Haslbeck M and Buchner J. (2010) Molecular cell, 40, 253-266.
18. Thomashow L.S. and Weller D.M. (1995) Current concepts in the use of introduced bacteria for biological control: mechanisms and antifungal metabolites, pp. 187-235. In Stacey G and Keen NT (Eds.), Plant-microbe interactions. Chapman and Hall, New York.
19. Thomashow L.S., Weller D.M., Bonsall R.F. and Pierson L.S. (1990) Applied and Environmental Microbiology, 56, 908–912.
20. Torres-Garcia S.E., Tostado E.M.M., Rodriguez-Hernandez C.O., Torre J.A.F., Nigell K.M., Leora-Mura A, Ramirez-Castillo F.Y., Lopez-Gutierezz A, Olvera-Sandoval C, Lun-Lopez M.C.D., Avelar-Gonzalez F.J., Ramos-Gomez M.S. and Gurrero-Barrera A.L. (2015) International Journal of Current Research and Academic Research, 3, 85-100.
21. Urban- Chmiel R., Dec M., Puchalski A. and Wernicki A. (2013) Journal of Medical Microbiology, 62, 1897- 1901.
22. Walsh U.F., Morrissey J.P. and O'Gara F. (2001) Current Opinion in Biotechnology, 12, 289-295.