GENETIC ANALYSIS AND TRAITS ASSOCIATION IN F2:3 POPULATION OF RICE UNDER ZINC DEFICIENT CONDITION

SANDHYA1, MUKUL2, PRASHANT BISEN3, LOITONGBAM BAPSILA4, P.K. SINGH5*
1Department of Genetics and Plant Breeding, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, U.P., India
2Department of Genetics and Plant Breeding, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, U.P., India
3Department of Genetics and Plant Breeding, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, U.P., India
4Department of Genetics and Plant Breeding, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, U.P., India
5Department of Genetics and Plant Breeding, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, U.P., India
* Corresponding Author : pksbhu@gmail.com

Received : 14-11-2017     Accepted : 21-11-2017     Published : 28-12-2017
Volume : 9     Issue : 12       Pages : 322 - 324
Genetics 9.12 (2017):322-324

Keywords : Variability, Correlation, Heritability, Rice (Oryza sativa L.), Zinc
Academic Editor : Dr Mahesh Rao
Conflict of Interest : None declared
Acknowledgements/Funding : Authors are thankful to International Rice Research Institute, Philippines for providing the research material, and Department of Genetics and Plant Breeding, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, U.P., India for needful support
Author Contribution : All author contributed equally

Cite - MLA : SANDHYA, et al "GENETIC ANALYSIS AND TRAITS ASSOCIATION IN F2:3 POPULATION OF RICE UNDER ZINC DEFICIENT CONDITION." International Journal of Genetics 9.12 (2017):322-324.

Cite - APA : SANDHYA, MUKUL, BISEN, PRASHANT, BAPSILA, LOITONGBAM, SINGH, P.K. (2017). GENETIC ANALYSIS AND TRAITS ASSOCIATION IN F2:3 POPULATION OF RICE UNDER ZINC DEFICIENT CONDITION. International Journal of Genetics, 9 (12), 322-324.

Cite - Chicago : SANDHYA, MUKUL, PRASHANT BISEN, LOITONGBAM BAPSILA, and P.K. SINGH. "GENETIC ANALYSIS AND TRAITS ASSOCIATION IN F2:3 POPULATION OF RICE UNDER ZINC DEFICIENT CONDITION." International Journal of Genetics 9, no. 12 (2017):322-324.

Copyright : © 2017, SANDHYA, et al, Published by Bioinfo Publications. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

Abstract

Genetic variability assessment gives basic information concerning the genetic properties of the population based on which breeding methods could be formulated for further improvement of the crop. The estimates of heritability, coefficients of variability and genetic advance were computed in 276 F2:3 lines of a cross Kinandang Patong× A69-1 for 12characters including zinc deficiency tolerance and yield contributing traits under zinc-deficient condition during kharif season 2016. The highest genotypic coefficient of variation (GCV) was found for leaf bronzing score. High heritability with high genetic advance was obtained in filled grains per panicle, grain yield per plant and plant height which is indicative of additive gene action. The correlation analysis revealed that the grain yield per plant had a highly positive significant association with all traits except seedling survival and leaf bronzing score. High heritability coupled with high and moderate genetic advance was observed for all the traits observed. However, grain yield per plant was negatively significantly correlated with unfilled grains per panicle. This implies that selection for these characters would lead to simultaneous improvement of grain yield.

References

1. Singh M.V. (2008) (ed. Alloway Brown) Springer, NewYork.
2. Welch R.M. and Graham R.D. (2004) Journal of Experimental Botany, 55, 353–364.
3. Reddy E.S.S., Verulkar S.B., Saxena R.R., Xalxo S., Verma S.K. and Deepthi P. (2013) International Journal of Science Innovations and Discoveries, 3(3), 317-325.
4. Myers S.S., Wessells K.R., Kloog I., Zanobetti A. and Schwartz J. (2015) The Lancet Global Health, 3(10), 639-645.
5. IRRI Bringing Hope, Improving Lives: Strategic Plan, 2007–2015, International Rice Research Institute, Manila, Philippines (2006).
6. Quijano-Guerta C., Krik G.J.D, Portugal A.M, Bartolome V. and Mclaren G.C. (2002) Field Crops Research, 76, 123-130.
7. Wissuwa M, Ismail A.M. and Yanagihara S. (2006) Plant Physiology, 142, 731–741.
8. Gregorio G.B., Senadhira D., Htut T. and Graham R.D. (2000) Food Nutrition Bulletin, 21, 382-386.
9. Wissuwa, M., Ismail, A. and Graham, R. (2008) Plant Soil, 306, 37-48.
10. Impa S.M., Gramlich A., Tandy S., Schulin R., Frossard E. and Johnson Be bout S.E. (2013) Frontiers in Plant Science,4, 534.
11. Yoshida S. and Tanaka A. (1969) Soil Science and Plant Nutrition, 15, 75-80.
12. Marschner H. (1995) London, UK: Academic Press. London, UK., 303.
13. Neue H.U. and Lantin R.S. (1994) Springer-Verlag, Berlin, Germany, 175-200.
14. Dobermann A. and Fairhurst T. (2000) International Rice Research Institute, Manila, Philippines.
15. Singh B., Natesan S.K.A., Singh B.K. and Usha K. (2003) Current Sciences, 88, 36-44.
16. Dutta P, Dutta P.N. and Borua P.K. (2013) Universal Journal of Agricultural Research,1(3), 85-96.
17. Konate A.K., Zongo A., Kam H., Sanni A. and Audebert A. (2016) African Journal of Agricultural Research, 11(35), 3340-3346.
18. Rafi SA, Nath UK (2004) Journal of Biological Sciences, 4(2), 157-159.
19. Moosavi M, Ranjbar G, Zarrini HN, Gilani A. (2015)Biological Forum – An International Journal, ,7(1), 43-47.
20. Ogunbayo S.A., Sie M., Ojo D.K., Sanni K.A., Akinwale M.G., Toulou B., Shittu A., Idehen E.O., Popoola A.R., Daniel I.O. and Gregoria G.B. (2014) Journal of Plant Breeding and Crop Science, 6(11), 153-159.
21. Castro R.U. (1977) Zinc deficiency in rice: A review of research at the International Rice Research Institute. IRRI research paper, 9, 1-12.
22. Burton G.W. and Devan E.H. (1953) Agronomy Journal, 45, 478-481.
23. Lush J. L. (1940) Proceedings of the American Society of Animal Nutrition, (1), 293-301.
24. Deway D.R. and Lu K.H. (1959) Agronomy Journal, 51, 515-518.
25. Rani N.S., Prasad A.S., Prasad G.S.V., Reddy P.B. and Veni B.K. (2001) Indian Journal of Plant Genetic Resources, 14(2), 206-209.
26. Singh R.P., Kumar M.S. and Madhavilatha L. (2007) Journal of Research ANGRAU, 35(2), 16-22.
27. Pallavi Sushree, Loitongbam B., Bisen, P., Singh D., Sandhya and Singh P. K. (2017) International Journal of Genetics, 9 (11),318-321.
28. Vanitha J., Amudha K., Mahendran R., Srinivasan J., Robin S. and Kumari R.U. (2016) SABRAO Journal of Breeding and Genetics, 48(4), 425-433.
29. Khatun T., Mohamed M., Hanafi, Yusop M.R. and Wong M.Y. (2015) BioMed Research International, 1-7.
30. Suma M. R., Manjunath K. and Shashidhar H. E. (2014) The Bioscan, 9 (4), 1833 - 1841.
31. Shet M. R., Rajanna M. P., Ramesh S., Sheshshayee M. S. and Mahadevu P. (2012) Electronic Journal of Plant Breeding, 3 (3) 925 - 931.
32. Basavaraja T., S., Gangaprasad B. M., Dhusyantha K. and Hittlamani S. H. (2011) Electronic Journal of Plant Breeding, 2 (4), 523 - 526.
33. Shanthi P., Jebaraj S. and Geetha S. (2011) Indian Journal of Agricultural Research, 45 (3), 201 - 208.
34. Norain M. N., Shamsiah A., Abdul R. H., Nor A. H., Haslinda A. M. and Wan Aminuddin W.A. (2014) International Journal of Applied Agricultural Sciences, 9 (18), 143 - 147.
35. Raju C. H. S., Rao M. V. B. and Sudarshanam A. (2004) The Madras Agricultural Journal, 91, 66 - 69.
36. Pratap N., Singh P. K., Shekhar R., Soni S. K. and Mall A. K. (2012) SAARC Journal of Agriculture, 10 (2) 83- 94.
37. Monalisa M., Ali M. D. and Sasmal B. G. (2006) Crop Research, 31, 153 - 156.
38. Shashidhar H. E., Pasha F., Janamatti M., Vinod M. S. and Kanbar A. (2005) Oryza, 42, 156 - 159.
39. Iftekharudduaula K.M., Badshah M.S., Hassan M.S., Basher M.K. and Akter K. (2001) Bangladesh Journal of Plant Breeding and Genetics, 14(2), 43-49.