MAPPING QUANTITATIVE TRAIT LOCI FOR TILLERS NUMBER, PLANT HEIGHT AND THEIR CORRELATION IN RICE [Oryza sativa L.]

LINCOLN MANDAL1*, SUNIL KUMAR VERMA2, ANIL S. KOTASTHANE3
1Department of Plant Molecular Biology and Biotechnology, College of Agriculture, Indira Gandhi Krishi Vishwavidyalaya, Raipur, Chhattisgarh 492012, India
2Department of Genetics and Plant Breeding, College of Agriculture, Indira Gandhi Krishi Vishwavidyalaya, Raipur, Chhattisgarh 492012, India
3Department of Plant Pathology, College of Agriculture, Indira Gandhi Krishi Vishwavidyalaya, Raipur, Chhattisgarh 492012, India
* Corresponding Author : lincolndbt@gmail.com

Received : 01-11-2017     Accepted : 20-11-2017     Published : 28-11-2017
Volume : 9     Issue : 10       Pages : 309 - 313
Genetics 9.10 (2017):309-313

Keywords : Rice, Tillers per plant, Plant height, QTL analysis, RILs
Conflict of Interest : None declared
Acknowledgements/Funding : We are thankful to College of Agriculture, Indira Gandhi Krishi Vishwavidyalaya, Raipur, Chhattisgarh 492012, India for providing the necessary facilities.
Author Contribution : All author equally contributed

Cite - MLA : MANDAL, LINCOLN, et al "MAPPING QUANTITATIVE TRAIT LOCI FOR TILLERS NUMBER, PLANT HEIGHT AND THEIR CORRELATION IN RICE [Oryza sativa L.] ." International Journal of Genetics 9.10 (2017):309-313.

Cite - APA : MANDAL, LINCOLN, VERMA, SUNIL KUMAR, KOTASTHANE, ANIL S. (2017). MAPPING QUANTITATIVE TRAIT LOCI FOR TILLERS NUMBER, PLANT HEIGHT AND THEIR CORRELATION IN RICE [Oryza sativa L.] . International Journal of Genetics, 9 (10), 309-313.

Cite - Chicago : MANDAL, LINCOLN, SUNIL KUMAR VERMA, and ANIL S. KOTASTHANE. "MAPPING QUANTITATIVE TRAIT LOCI FOR TILLERS NUMBER, PLANT HEIGHT AND THEIR CORRELATION IN RICE [Oryza sativa L.] ." International Journal of Genetics 9, no. 10 (2017):309-313.

Copyright : © 2017, LINCOLN MANDAL, et al, Published by Bioinfo Publications. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

Abstract

Rice (Oryza sativa L.) is a staple food for most of the world’s people. About, 122 RILs population derived from a cross Danteshwari × Dagad deshi was used to identify QTL for tillers number per plant and plant height. The normal frequency distribution was followed for both the traits tillers per plant and plant height. Correlation between tiller number and plant height was evaluated and shown significant negative correlation, which means that dwarf plant having more tiller as compare to tall plant. A total of four QTLs were identified for tillers per plant and two for plant height using QTL cartographer 2.5 on chromosomes 1 and 3, respectively. The “qTN1.1” and “qTN3.1” for tiller number per plant on chromosomes 1 and 3, respectively. The both QTLs for tillers number per plant “qTN1.1” and “qTN3.1” showed positive additive effect, means that alleles from the parent Danteshwari acted to increase the measured trait tiller number per plant. Two significant major QTLs, “qPH1.1” and “qPH1.2” also mapped for plant height on chromosomes 1, with very high phenotypic variance of 53.97 and 46.29%, respectively. The QTL, “qPH1.1” for plant height found between marker RM3825 and HvSSR1-87 exactly co-localized the “qTN1.1” of tillers number per plant on chromosome 1. Both the negatively correlated traits tightly linked and present on same loci, showing linkage drag. The “qTN1.1” and “qTN3.1” could be useful for the improvement of plant type by pyramiding via. marker-assisted selection as tiller number a key component of grain yield.

References

1. Khush G. S. (2005) Plant Mol. Biol., 59, 1-6.
2. Yan J. Q., Zhu J., He C. X., Benmoussa M. and Wu P. (1998a) Theor. Appl. Genet., 97(1/2), 267-274.
3. Wu W., Zhou Y., Li W., Mao, D. and Chen Q. (2002) Theor. Appl. Genet., 105, 1043-1049.
4. Yang G., Xing Y., Li S., Ding J., Yue B., Deng K., Li Y. and Zhu Y. (2006) Hereditas, 143, 236-245.
5. Liu Y., Xu J., Ding Y., Wang Q., Li G. and Wang S. (2011) Aust. J. Crop Sci., 5(2), 169-174.
6. Zhu J., Zhou Y., Liu Y., Wang Z., Tang Z., Yi C., Tang S., Gu M. and Liang G. (2011) Mol. Breeding, 27(2), 171-180.
7. Zhang B. S., Tian F., Tan L. B., Xie D. X. and Sun C. Q. (2011) J. Genet. Genomics, 38(9), 411-418.
8. Xiong Z. M. (1992) Research outline on rice genetics in China. In: Xiong ZM, Cai HF (eds). Rice in China. Chinese Agricultural Science Press, Beijing, pp 40Ð57
9. Li Z. K., Paterson A. H., Pinson S. R. M. and Stansel J. W. (1999) Euphytica, 109, 79-84.
10. Li X. Y., Qian Q., Fu Z. M., Wang Y. H., Xiong G. S., Zheng D. L., Wang X. Q., Liu X. F., Teng S., Hiroshi F., Yuan M., Luo D., Han B. and Li J. Y. (2003) Nature, 422, 618-621.
11. Wang X.-m., Liang Y.-y., Li L., Gong C.-w., Wang H.-p., Huang X.-x., Li S.-c., Deng Q.-m., Zhu J., Zheng A.-p., Li P., Wang S.-q. (2015) Rice Science, 22(6), 255-263.
12. Cui, K. H., Peng, S. B., Xing, Y. Z., Yu, S. and Xu, C. (2004) Plant Prod. Sci., 7, 309–318.
13. Marri P. R., Sarla N., Reddy L. V. and Siddiq E. A. (2005) BMC Genetics, 6, 33-47.
14. Liu G. F., Xu H. M., Yang, J. and Zhu, J. (2006) Journal of Zhejiang University, 32, 527-534.
15. Nagabhushana K., Mane S. P. and Hittalmani S. (2006) Indian J. Crop Science, 1(1-2), 97-101.
16. Zhao F. M., Liu G.F., Zhu H.T., Ding X.H., Zeng R.Z., Zhang Z.M., Li W.T. and Zhang G.Q. (2008) Agric. Sci. China, 7(3), 257–265.
17. Liu G. F., Zeng R. Z., Zhang Z. M., Zhu H. T., Zhao F. M., Ding X. H., Li W. T. and Zhang G. Q. (2009) Theor. Appl. Genet., 118, 443-453.
18. Liu G. F., Zhu H.T., Liu S., Zeng R., Zhang Z., Li W., Ding X.H., Zhao F.M. and Zhang G.Q. (2010) Genetica, 138(8), 885-93.
19. Wang L., Wang A., Huang X., Zhao Q., Dong G., Qian Q., Sang T. and Han, B. (2011) Theor. Appl. Genet., 122(2), 327-340.
20. Jiang J. H., Liu Q.M., Zhang H., Liu J., Lu C., Ni W. L. and Hong D.L. (2012) Afr. J. Agric. Res., 7(27), 3964-3977.
21. Zhou S, Zhu M, Wang F, Huang J and Wang G. (2013) Pak. J. Bot., 45(1), 183-189.
22. Bian J., He H., Shi H., Zhu C., Peng X. S., Li C., Fu J., He X. P., Chen X. R., Hu L. F. and Ouyang L. (2013) AJCS, 7(8), 1189-1197.
23. Jing-jing X., Shao-hua W., Zhang H., Pei-zhou X. U. and Xian jun W. U. (2013) Rice Science, 20(3), 179-184.
24. Swamy B. P. M., Kaladhar K., Reddy G. A., Viraktamath B. C. and Sarla N. (2014) J. Genet. 93, 643–654.
25. Huang N., Courtois B., Khush G. S., Lin H. X., Wang G. L., Wu P. and Zheng K. (1996) Heredity, 77(2), 130-137.
26. Ming, S. K. and Xiong Z. M. (1987) Zhejiang Sci. & Tech. Press, Hangzhou. pp. 69-71.
27. Kinoshita T. (1995) Rice Genet. Newslett., 12, 9-153.
28. Li Z. K., Pinson S. R. M., Stansel J. W. and Park W.D. (1995) Theor. Appl. Genet. 91, 374-381.
29. Yan J., Zhu J., He C., Benmoussa M. and Wu P. (1998b) Genetics, 150, 1257-1265.
30. Yu S. B., Li J. X., Xu C. G., Tan Y. F., Li X. H. and Zhang Q. F. (2002) Theor. Appl. Genet., 104, 619-625.
31. Cheng Y., Wang Q. and Ban Q. (2009) Hort. science, 44(2), 268-273.
32. Chen Z., Hu F., Xu P., Li J., Deng X., Zhou J., Li F., Chen S. and Tao D. (2009) Breeding Science, 59, 441-445.
33. Lin Y. R., Wu S. C., Chen S. E., Tseng T. H., Chen C. S., Kuo S. C., Wu H. P. and Hsing Y. I. C. (2011) Botanical Studies, 52, 1-14.
34. Bai X. F., Luo L. J., Yan W. H., Kovi M. R. and Xing Y. Z. (2011) J. Genet., 90, 209-215.
35. Yong-shu L., Zhi-qiang G., Xi-hong S., Xiao-deng Z., Ying-xin Z., Wei-ming W., Li-yong C. and Shi-hua C. (2011) Rice Science, 18(4), 265−272.
36. Lee S., Jia M. H., Jia Y. and Liu G. (2014) Euphytica, 197(2), 191-200.
37. IRRI. (2002) Standard evaluation system for rice. International Rice Research Institute, Los Banos, Philippines.
38. Doyle J. J. (1987) Phytochem. Bul 19, 11-15.
39. McCouch S. R., Teytelman L., Xu Y., Lobes K. B., Clare K., Walton M., Fu B., Maghirang R., Li Z., Xing Y., Zhang Q., Kono I., Yano M., Fjellstrom R., DeClerck G., Schneider D., Cartinhour S., Ware D. and Stein L. (2002) DNA Res., 9, 199-207.
40. Singh H, Deshmukh R K, Singh A, Singh A K, Gaikwad K, Sharma T R, Mohapatra T and Singh N K. (2010) 25(2), 359–364.
41. Lander E. S., Gren P., Abragambson J., Baarlow A., Daly M.J., Lincoln S. E. and Newburg L. (1987) Genomics, 1, 174-181.
42. Kosambi D. D. (1944) Ann. Eugen., 12, 172-175.
43. http://www.gramene.org
44. Wang S., Basten C. J. and Zeng Z. B. (2007) Windows QTL Cartographer 2.5. Raleigh, NC. Department of Statistics, North Carolina State University, Available from Internet: http://statgen.ncsu.edu/qtlcart/WQTLCart.htm.
45. Wu W. R., Li W. M., Tang D. Z., Lu H. R. and Worland A. J. (1999) Genetics, 151(1), 297-303.
46. Liu G., Zhu H., Zhang G., Li L. and Ye G. (2012) Theor. Appl. Genet., 125(1), 143-153.
47. Richards R. A. (1988) Aust. J. Agric. Res., 39, 749-757.
48. Iwata N., Takamure I., Wu H. K., Siddinq E. A. and Rutger J. N. (1995) Rice Genet Newsl, 12, 61-93.
49. Salimath L. P. M., Shashidhar H. E., Mohankumar H. D., Patil S. S., Vamadevaiah H. M. and Janagoudar B. S. (2011) Karnataka J. Agric. Sci., 24(5), 626-628.
50. Babu V. R., Shreya K., Dangi K. S., Usharani G. and Shankar A.S. (2012) International Journal of Scientific and Research Publications, 2(3), 1-5.
51. Zhang Y., Luo L., Xu C., Zhang Q. and Xing Y. (2006) Theor. Appl. Genet., 113, 361–368.