GLYCEROL BIOCONVERSION INTO 1,3-PROPANEDIOL AND 2,3-BUTANEDIOL BY Lactuca sativa RHIZOBACTERIA

RENAN DE SOUZA SOARES1*, MARCUS VINICIUS FORZANI2, ARIANA ALVES RODRIGUES3, BRUNO FRANCESCO RODRIGUES DE OLIVEIR4, KELLY JOHANA DUSSAN MEDINA5, SILVIO SILVERIO DA SILVA6, JOSE DANIEL GONCALVES VIEIRA7
1Laboratory of Environmental Microbiology and Biotechnology (LAMAB), Federal University of Goias, Goiania, Goias, 74605050, Brazil
2Laboratory of Environmental Microbiology and Biotechnology (LAMAB), Federal University of Goias, Goiania, Goias, 74605050, Brazil
3Laboratory of Environmental Microbiology and Biotechnology (LAMAB), Federal University of Goias, Goiania, Goias, 74605050, Brazil
4Laboratory of Environmental Microbiology and Biotechnology (LAMAB), Federal University of Goias, Goiania, Goias, 74605050, Brazil
5Biotechnology Department, Engineering School of Lorena, University of Sao Paulo, Lorena, Sao Paulo, 12602810, Brazil
6Biotechnology Department, Engineering School of Lorena, University of Sao Paulo, Lorena, Sao Paulo, 12602810, Brazil
7Laboratory of Environmental Microbiology and Biotechnology (LAMAB), Federal University of Goias, Goiania, Goias, 74605050, Brazil
* Corresponding Author : renan_souza37@hotmail.com

Received : 07-09-2017     Accepted : 20-09-2017     Published : 28-09-2017
Volume : 9     Issue : 9       Pages : 954 - 958
Int J Microbiol Res 9.9 (2017):954-958

Keywords : Bioenergy, Fermentation, Byproduct, Carbon source, Industrial microbiology
Academic Editor : Lilian Carla Carneiro
Conflict of Interest : None declared
Acknowledgements/Funding : The authors thank the Research Support Foundation of the State of Goias (Fundacao de Amparo a Pesquisa do Estado de Goias - FAPEG), process number 201210267001173 and the Coordination for the Improvement of Higher Education Personnel (CAPES) for the fellowship to the first author.
Author Contribution : all author equally contributed

Cite - MLA : SOARES, RENAN DE SOUZA, et al "GLYCEROL BIOCONVERSION INTO 1,3-PROPANEDIOL AND 2,3-BUTANEDIOL BY Lactuca sativa RHIZOBACTERIA." International Journal of Microbiology Research 9.9 (2017):954-958.

Cite - APA : SOARES, RENAN DE SOUZA, FORZANI, MARCUS VINICIUS, RODRIGUES, ARIANA ALVES, RODRIGUES DE OLIVEIR, BRUNO FRANCESCO, DUSSAN MEDINA, KELLY JOHANA, DA SILVA, SILVIO SILVERIO, VIEIRA, JOSE DANIEL GONCALVES (2017). GLYCEROL BIOCONVERSION INTO 1,3-PROPANEDIOL AND 2,3-BUTANEDIOL BY Lactuca sativa RHIZOBACTERIA. International Journal of Microbiology Research, 9 (9), 954-958.

Cite - Chicago : SOARES, RENAN DE SOUZA, MARCUS VINICIUS FORZANI, ARIANA ALVES RODRIGUES, BRUNO FRANCESCO RODRIGUES DE OLIVEIR, KELLY JOHANA DUSSAN MEDINA, SILVIO SILVERIO DA SILVA, and JOSE DANIEL GONCALVES VIEIRA. "GLYCEROL BIOCONVERSION INTO 1,3-PROPANEDIOL AND 2,3-BUTANEDIOL BY Lactuca sativa RHIZOBACTERIA." International Journal of Microbiology Research 9, no. 9 (2017):954-958.

Copyright : © 2017, RENAN DE SOUZA SOARES, et al, Published by Bioinfo Publications. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

Abstract

The present work aimed to isolate Lactuca sativa (lettuce) rhizobacteria and assess its capacity to bio-convert glycerol into the added-value compounds 2,3-butanediol and 1,3-propanediol. Six strains were isolated from rhizospheric soil in a selected culture medium and identified by sequencing the 16S rDNA region. The microbial growth pattern was tested in different glycerol concentrations, and the simultaneous production of the compounds of interest was quantified. The species of the Enterobacteriaceae family dominated, especially the genus Enterobacter. The test of different glycerol concentrations in culture medium suggests a concentration of 20 g.L-1 as ideal to promote the fermentation process and grow the isolated rhizobacteria. Three samples were identified as simultaneous producers of the relevant compounds. The best fermenting isolate, Enterobacter cloacae (AG3), produced 0.522 g.L-1 of 2,3-butanediol and 0.735 g.L-1 of 1,3-propanediol. Therefore, lettuce rhizobacteria are capable of producing added-value compounds from the fermentation of glycerol as a sole carbon source.

References

[1] C., Luque R., Luna D., Hidalgo J.M., Posadillo A., Sancho E.D., Rodriguez S., Ferreira-Dias S., Bautista F. and Romero A.A. (2010) Bioresour Technol, 101(17), 6657-6662. [2] (2013) Anuário estatístico brasileiro do petróleo, gás natural e biocombustíveis: 2013. ANP, Rio de Janeiro. [3] O., Horvath T., Pond C., Misra M. and Mohanty A. (2015) Ind Crops Prod, 78, [4] W.S., Kang J.H., Chu H.S., Choi I.S. and Cho K.M. (2014) Metab Eng, 23, 116-122. [5] J.R., Fávaro L.C. and Quirino B.F. (2012) Biotechnol Biofuels, 5(1), [6] K. and Trchounian A. (2015) Appl Energ, 156, [7] M., Paramithiotis S., Drosinos E.H., Galiotou‐Panayotou M., Nychas G.J.E., Zeng A.P. and Papanikolaou S. (2012) Eng Life Sci., 12(1), [8] R., Hartmann A. and Nehls U. (2012) In: Matyssek R, Schnyder H, Oßwald W, Ernst D, Munch JC, Pretzsch H (eds) Growth and defence in plants. Berlim, Springer Berlin [9] B.H., Lee B., Kloepper J.W. and Ryu C.M. (2013) Plant Signal Behav., 8(7), e24619. [10] C.M. (2015) Principles of Plant-Microbe Interactions. Switzerland, Springer International Publishing. [11] M.H., Kim S.J., Kim J.W., Park Y.C. and Seo J.H. (2016) Process Biochem, 51(2), [12] D. and Leja K. (2014) Electron J Biotechnol, 17(2), [13] B., Yonsel S. and Deckwer W.D. (1991) Appl Microbiol Biotechnol, 36(3), [14] A.A., Forzani M.V., Soares R.D.S., Sibov S.T. and Vieira J.D.G. (2016) Pesqui Agropecu Trop, 46(2), 149-158. [15] O.V.D., Rosa D.D. and Camargo L.E.A. (2008) Sci Agric., 65(5), [16] L.D. and Haas H.F. (1941) ‎J. Bacteriol, 41(5), [17] M.M (1936) J Pathol, 42 (2), 441-454. [18] S.M., Khan A.L., Hussain J., Ali L., Kamran M., Waqas M. and Lee I.J. (2012) Molecules 17(7), [19] J, Hernández JA, Caravaca F and Roldán A (2009) Environ Exp Bot, 65(2), 245-252. [20] C.C., Kämpfer P., Shen F.T., Lai W.A. and Arun A.B. (2005) Int J Syst Evol Microbiol, 55(1), [21] C.K., Aeron A., Patel B.V., Maheshwari D.K. and Saraf M. (2011) In: Maheshwari, D. K. (ed) Bacteria in Agrobiology: Plant Growth Responses. Berlin, Springer Berlin [22] G.P., Mack M. and Contiero J. (2009) ‎Biotechnol Adv, 27(1), [23] P., Sharma R., Ray S., Mehariya S., Patel S.K., Lee J.K. and Kalia V.C. (2015) Bioresour Technol, 182, [24] T., Rao Z., Zhang X., Xu M., Xu Z. and Yang S.T. (2015) Microb Cell Fact, 14(1), 122-133. [25] Y., Murarka A. and Gonzalez R. (2006) ‎Biotechnol Bioeng, 94(5), [26] S. and Devaraj A. (2013) IJSRP, 3(8), [27] R.K., Anand P., Saran S. and Isar J. (2009) Biotechnol Adv, 27(6), [28] D. (2015) Electronic Electron J Biotechnol, 18(2), [29] T., Nakashimada Y., Senba K., Matsui T. and Nishio N. (2005) J BioscI Bioeng, 100(3), [30] B., Bahl H. and Gottschalk G. (1992) Appl Environ Microbiol, 58(4), [31] III J.J. (1999) In: Murray P.R., Baron E.J., Pfaller M.A., Tenover F.C., Yolken R.H. (ed) Manual of clinical microbiology, 7 edn. Washington D.C., ASM [32] G. A. (2017). Engineering of Microorganisms for the Production of Chemicals and Biofuels from Renewable Resources. Springer International [33] L.F., Arcaro J.R.P. and Nader Filho A. (2009) Ci Anim Bras, 10 (4), [34] J.R. (2007) Dissertation, Federal University of Santa Catarina [35] K. and Petrova P. (2010) Appl Microbiol Biotechnol, 87(3), [36] G., Yang G., Wang X., Guo Q., Li Y. and Li J. (2012) Appl Biochem Biotechnol, 168(1), [37] H.W., Li F.T. and Chang J.S. (2014) Bioresour Technol, 153, [38] S., Prasertsan P. and Methacanon P. (2011) Process Biochem, 46(2), 608-614.